2,412
Views
1
CrossRef citations to date
0
Altmetric
CHEMICAL ENGINEERING

Development and Testing of Solar Powered Evaporative Air-Cooling System with an Improved Performance

, ORCID Icon &
Article: 2178115 | Received 18 Jul 2022, Accepted 05 Feb 2023, Published online: 20 Feb 2023

References

  • Abdel-Fadeel, W. A., & Attalla, M. (2014). Experimental study on the palm fiber using as a direct evaporative cooler pad. Int. J. Mech. Mechatronics Eng, 14(4), 14–14.
  • Abohorlu Doğramacı, P., Riffat, S., Gan, G., & Aydın, D. (2019). Experimental study of the potential of eucalyptus fibers for evaporative cooling. Renew. Energy, 131, 250–260. https://doi.org/10.1016/j.renene.2018.07.005
  • Alamdari, P., Saedodin, S., & Rejvani, M. (2020). Do non-metallic material and radiation shields affect the operation of direct evaporative cooling systems? Int. J. Refrig, 114, 98–105. https://doi.org/10.1016/j.ijrefrig.2020.02.038
  • Alam, M. F., Sazidy, A. S., Kabir, A., Mridha, G., Litu, N. A., & Rahman, M. A. (2017). An experimental study on the design, performance, and suitability of evaporative cooling system using different indigenous materials. AIP Conf. Proc, 1851. https://doi.org/10.1063/1.4984704
  • Amer, O., Boukhanouf, R., & Ibrahim, H. G. (2015). A Review of Evaporative Cooling Technologies. Int. J. Environ. Sci. Dev, 6(2), 111–117. https://doi.org/10.7763/ijesd.2015.v6.571
  • Budaev, Z. B., Livanova, A. V., Meshcheryakov, E. P., Isupova, L. A., & Magaev, O. V. (2019). Influence of the composition of the adsorbent ‘hygroscopic salt/aluminum oxide’ on its physicochemical properties. IOP Conf. Ser. Mater. Sci. Eng, 597(1), 3–10. https://doi.org/10.1088/1757-899X/597/1/012025
  • Cruz, J., Leitão, A., Silveira, D., Pichandi, S., Pinto, M., & Fangueiro, R. (2017). Study of moisture absorption characteristics of cotton terry towel fabrics. Procedia Eng, 200, 389–398. https://doi.org/10.1016/j.proeng.2017.07.055
  • Daǧtekin, M., Karaca, C., Yildiz, Y. I., Başçetinçelik, A., & Paydak, Ö. (2011). The effects of air velocity on the performance of pad evaporative cooling systems. African J. Agric. Res, 6(7), 1813–1822. https://doi.org/10.5897/AJAR10.1110
  • Das, B., Das, A., Kothari, V. K., Fanguiero, R., & de Araújo, M. (2007). Moisture transmission through textiles: Part I: Processes involved in moisture transmission and the factors at play. Autex Res. J, 7(2), 100–110.
  • Delele, M. A., Ngcobo, M. E. K., Getahun, S. T., Chen, L., Mellmann, J., & Opara, U. L. (2013). Studying airflow and heat transfer characteristics of a horticultural produce packaging system using a 3-D CFD model. Part I: Model development and validation. Postharvest Biol. Technol, 86, 536–545. https://doi.org/10.1016/j.postharvbio.2013.08.014
  • Dhamneya, A. K., Rajput, S. P. S., & Singh, A. (2018). Thermodynamic performance analysis of a direct evaporative cooling system for increased heat and mass transfer area. Ain Shams Eng. J, 9(4), 2951–2960. https://doi.org/10.1016/j.asej.2017.09.008
  • Dmitriev, A. V., Madyshev, I. N., Kharkov, V. V., Dmitrieva, O. S., & Zinurov, V. E. (2021). Experimental investigation of fill pack impact on the thermal-hydraulic performance of evaporative cooling tower. Therm. Sci. Eng. Prog, 22, 100835. https://doi.org/10.1016/j.tsep.2020.100835
  • Doğramacı, P. A., & Aydın, D. (2020). Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot-dry climate. J. Build. Eng, 30, 101240. https://doi.org/10.1016/j.jobe.2020.101240
  • Fikri, B., Sofia, E., & Putra, N. (2020). Experimental analysis of a multistage direct-indirect evaporative cooler using a straight heat pipe. Appl. Therm. Eng, 171, 115133. https://doi.org/10.1016/j.applthermaleng.2020.115133
  • Fouda, A., & Melikyan, Z. (2011). A simplified model for analysis of heat and mass transfer in a direct evaporative cooler. Appl. Therm. Eng, 31(5), 932–936. https://doi.org/10.1016/j.applthermaleng.2010.11.016
  • Gunhan, T., Demir, V., & Yagcioglu, A. K. (2007). Evaluation of the Suitability of Some Local Materials as Cooling Pads. Biosyst. Eng, 96(3), 369–377. https://doi.org/10.1016/j.biosystemseng.2006.12.001
  • John, R. Taylor. (2015). An Introduction to Error Analysis_ The Study of Uncertainties in Physical Measurements.
  • Kashyap, S., Sarkar, J., & Kumar, A. (2021). Performance assessment of dual-mode evaporative cooler for futuristic climatic scenarios considering climate change effect. J. Build. Eng, 42, 103043. https://doi.org/10.1016/j.jobe.2021.103043
  • Kasso, M., & Bekele, A. (2016). Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2016.01.005
  • Khater, E.-S. G. (2014). Performance of Direct Evaporative Cooling System under Egyptian Conditions. J. Climatol. Weather Forecast, 2(2). https://doi.org/10.4172/2332-2594.1000119
  • Khobragade, N. N., & Dr, S. C. (2016). Experimental Performance of Different Evaporative Cooling Pad Material of Direct Evaporative Cooler in Hot and Dry Region. Int. J. Innov. Technol. Res, 4(3), 2920–2923.
  • Korese, J. K., & Hensel, O. (2016). Experimental evaluation of bulk charcoal pad configuration on evaporative cooling effectiveness. Agric. Eng. Int. CIGR J, 18(4), 11–21.
  • Kumar, S., Salins, S. S., Reddy, S. V. K., & Nair, P. S. (2021). Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions. Energy, 233, 121136. https://doi.org/10.1016/j.energy.2021.121136
  • Laknizi, A., Ben Abdellah, A., Faqir, M., Essadiqi, E., & Dhimdi, S. (2021). Performance characterization of a direct evaporative cooling pad based on pottery material. Int. J. Sustain. Eng, 14(1), 46–56. https://doi.org/10.1080/19397038.2019.1677800
  • Laknizi, A., Mahdaoui, M., Ben Abdellah, A., Anoune, K., Bakhouya, M., & Ezbakhe, H. (2019). Performance analysis and optimal parameters of a direct evaporative pad cooling system under the climate conditions of Morocco. Case Stud. Therm. Eng, 13, 100362. https://doi.org/10.1016/j.csite.2018.11.013
  • Lal Basediya, A., Samuel, D. V. K., & Beera, V. (2013). Evaporative cooling system for storage of fruits and vegetables - A review. J. Food Sci. Technol, 50(3), 429–442. https://doi.org/10.1007/s13197-011-0311-6
  • Liao, C. M., & Chiu, K. H. (2002). Wind tunnel modeling the system performance of alternative evaporative cooling pads in Taiwan region. Build. Environ, 37(2), 177–187. https://doi.org/10.1016/S0360-1323(00)00098-6
  • Liao, C. M., Singh, S., & Sen, T. (2008). Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering Characterizing the performance of alternative evaporative cooling pad media in thermal environmental control applications. Journal of Environmental Science and Health, 2015, 1391–1417. https://doi.org/10.1080/10934529809376795
  • Makule, E., & Dimoso, N. (2022). Precooling and Cold Storage Methods for Fruits and Vegetables in Sub-Saharan Africa — A Review. Horticulturae, 8(9), 1–15. https://doi.org/10.3390/horticulturae8090776
  • Manuwa, S. I., & Odey, S. O. (2012). Evaluation of pads and geometrical shapes for constructing evaporative cooling system. Mod. Appl. Sci, 6(6), 45–53. https://doi.org/10.5539/mas.v6n6p45
  • Maurya, R., Shrivastava, N., & Shrivastava, V. (2014). Performance evaluation of alternative evaporative cooling media. Int. J. Sci. Eng. Res, 5(9), 676–684.
  • Nada, S. A., Elattar, H. F., Mahoud, M. A., & Fouda, A. (2020). Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers. Energy, 211, 118678. https://doi.org/10.1016/j.energy.2020.118678
  • Ndukwu, M. C., & Manuwa, S. I. (2014). Review of research and application of evaporative cooling in preservation of fresh agricultural produce. International Journal of Agricultural and Biological Engineering, 7, 85–102. https://doi.org/10.3965/j.ijabe.20140705.010
  • Okada, K., Nakanome, M., Kameshima, Y., Isobe, T., & Nakajima, A. (2010). Water vapor adsorption of CaCl2-impregnated activated carbon. Mater. Res. Bull, 45(11), 1549–1553. https://doi.org/10.1016/j.materresbull.2010.07.027
  • Olosunde, W. A., Igbeka, J. C., & Olurin, T. O. (2009). Performance evaluation of absorbent materials in the evaporative cooling system for the storage of fruits and vegetables. Int. J. Food Eng, 5(3). https://doi.org/10.2202/1556-3758.1376
  • Sipho, S., & Tilahun, S. W. (2020). Potential causes of postharvest losses, low-cost cooling technology for fresh produce farmers in Sub-Saharan Africa. African J. Agric. Res, 16(5), 553–566. https://doi.org/10.5897/ajar2020.14714
  • Solomon, Ioan., Ribeiro, A. M., Santos, Jo˜ao C., Loureiro, Jos´e M., Rodrigues, Al´ırio E., Sandu, Ion., & M˘amalig, Ioan. (2013). Adsorption equilibrium of water vapor on activated carbon and alumina and carbon and alumina impregnated with hygroscopic salt. Turkish J. Chem, 37(3), 358–365. https://doi.org/10.3906/Kim-1206-40
  • Tejero-González, A., & Franco-Salas, A. (2021). Optimal operation of evaporative cooling pads: A review. Renew. Sustain. Energy Rev, 151, 111632. https://doi.org/10.1016/j.rser.2021.111632
  • Tso, C. Y., & Chao, C. Y. H. (2012). Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. Int. J. Refrig, 35(6), 1626–1638. https://doi.org/10.1016/j.ijrefrig.2012.05.007
  • Velasco-Gómez, E., Tejero-González, A., Jorge-Rico, J., & Rey-Martínez, F. J. (2020). Experimental investigation of the potential of a new fabric-based evaporative cooling pad. Sustain, 12(17). https://doi.org/10.3390/su12177070
  • Wijaksana, H., Winaya, I. N. S., Sucipta, M., Ghurri, A., & Suarnadwipa, N. (2018). The investigation on cooling capacity and CELdek material pad classification of evaporative cooling pad system using different pad material with water temperature and water discharge variations. AIP Conf. Proc, 1983, 1–7. https://doi.org/10.1063/1.5046215
  • Xuan, Y. M., Xiao, F., Niu, X. F., Huang, X., & Wang, S. W. (2012). Research and application of evaporative cooling in China: A review (I) - Research. Renew. Sustain. Energy Rev, 16(5), 3535–3546. https://doi.org/10.1016/j.rser.2012.01.052
  • Yu, Q. Y., Zhao, H., Sun, S., Zhao, H., Li, G., & Li, M. (2019). Characterization of MgCl2/AC composite adsorbent and its water vapor adsorption for solar drying system application. Renew. Energy, 138, 1087–1095. https://doi.org/10.1016/j.renene.2019.02.024
  • Zakari, M. D., Abubakar, Y. S., Muhammad, Y. B., Shanono, N. J., Nasidi, N. M., Abubakar, M. S., Muhammad, A. I., Lawan, I., & Ahmad, R. K. (2016). Design and construction of an evaporative cooling system for the storage of fresh tomato. ARPN J. Eng. Appl. Sci, 11(4), 2340–2348.
  • Zheng, X., Ge, T. S., & Wang, R. Z. (2014). Recent progress on desiccant materials for solid desiccant cooling systems. Energy, 74(1), 280–294. https://doi.org/10.1016/j.energy.2014.07.027