2,057
Views
2
CrossRef citations to date
0
Altmetric
BIOMEDICAL ENGINEERING

Advances in the application of computational fluid dynamics in cardiovascular flow

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2178367 | Received 22 Jul 2022, Accepted 06 Feb 2023, Published online: 22 Feb 2023

References

  • Abazari, M. A., Rafieianzab, D., Soltani, M., & Alimohammadi, M. (2021). The effect of beta-blockers on hemodynamic parameters in patient-specific blood flow simulations of type-B aortic dissection: A virtual study. Sci Rep, 11(1), 1–12. https://doi.org/10.1038/s41598-021-95315-w
  • Abidi, A., Ahmadi, A., Enayati, M., Sajadi, S., Yarmand, H., Ahmed, A., & Cheraghian, G. (2021). A review of the methods of modeling multi-phase flows within different microchannels shapes and their applications. Micromachines, 12(9), 1113. https://doi.org/10.3390/mi12091113
  • Adib, M. A. H. M., Hong, L. S., Abdullah, M. S., Hassan, R., & Wada, S. (2020). A perspective review: Technical study of combining phase contrast magnetic resonance imaging and computational fluid dynamics for blood flow on carotid bifurcation artery. J Mech Eng Sci, 14(4), 7609–7621. https://doi.org/10.15282/jmes.14.4.2020.25.0599
  • Alimohammadi, M. (2018). Computational methods for patient-specific modelling. In Aortic dissection: Simulation tools for disease management and understanding (pp. 39–68). Springer Cham. https://link.springer.com/book/10.1007/978-3-319-56327-5
  • Andelovic, K., Winter, P., Jakob, P. M., Bauer, W. R., Herold, V., & Zernecke, A. (2021). Evaluation of plaque characteristics and inflammation using magnetic resonance imaging. Biomedicines, 9(2), 185. https://doi.org/10.3390/biomedicines9020185
  • Arzani, A. (2018). Accounting for residence-time in blood rheology models: Do we really need non-Newtonian blood flow modelling in large arteries? J R Soc Interface, 15(146), 20180486. https://doi.org/10.1098/rsif.2018.0486
  • Bit, A., Alblawi, A., Chattopadhyay, H., Morris, P. D., Narracott, A., von Tengg-Kobligk, H., Silva Soto, D. A., Hsiao, S., Lungu, A., Evans, P., Bressloff, N. W., Lawford, P. V., Hose, D. R., & Gunn, J. P. (2020). Three dimensional numerical analysis of hemodynamic of stenosed artery considering realistic outlet boundary conditions. Comput Methods Programs Biomed, 185, 105163. https://doi.org/10.1016/j.cmpb.2019.105163
  • Blum, K. M., Zbinden, J. C., Ramachandra, A. B., Lindsey, S. E., Szafron, J. M., Reinhardt, J. W., Heitkemper, M., Best, C. A., Mirhaidari, G. J. M., Chang, Y.-C., Ulziibayar, A., Kelly, J., Shah, K. V., Drews, J. D., Zakko, J., Miyamoto, S., Matsuzaki, Y., Iwaki, R., Ahmad, H., … Breuer, C. K. (2022). Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Commun Med, 2(1), 1–21. https://doi.org/10.1038/s43856-021-00063-7
  • Bodlak, R. (2021). Computational investigations of a shape-memory polymer foam embolization device for intracranial aneurysms. Doctoral thesis. UNIVERSITY OF OKLAHOMA. https://shareok.org/handle/11244/330199
  • Boutsianis, E., Dave, H., Frauenfelder, T., Poulikakos, D., Wildermuth, S., Turina, M., Ventikos, Y., & Zund, G. (2004). Computational simulation of intracoronary flow based on real coronary geometry. Eur J Cardio-thoracic Surg, 26(2), 248–256. https://doi.org/10.1016/j.ejcts.2004.02.041
  • Cai, Y., & Li, Z. (2021). Mathematical modeling of plaque progression and associated microenvironment: How far from predicting the fate of atherosclerosis? Comput Methods Programs Biomed, 211, 106435. https://doi.org/10.1016/j.cmpb.2021.106435
  • Carvalho, V., Carneiro, F., Ferreira, A. C., Gama, V., Teixeira, J. C., & Teixeira, S. (2021). Numerical study of the unsteady flow in simplified and realistic iliac bifurcation models. Fluids, 6(8), 284. https://doi.org/10.3390/fluids6080284
  • Carvalho, V., Pinho, D., Lima, R. A., Teixeira, J. C., & Teixeira, S. (2021). Blood flow modeling in coronary arteries: A review. Fluids, 6(2), 53. https://doi.org/10.3390/fluids6020053
  • Carvalho, V., Rodrigues, N., Lima, R. A., & Teixeira, S. Numerical simulation of blood pulsatile flow in stenotic coronary arteries: The effect of turbulence modeling and non-Newtonian assumptions. In: 2020 24th International Conference on Circuits, Systems, Communications and Computers (CSCC).; 2020:112–116.
  • Cebral, J. R., Castro, M. A., Appanaboyina, S., Putman, C. M., Millan, D., & Frangi, A. F. (2005). Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE Trans Med Imaging, 24(4), 457–467. https://doi.org/10.1109/TMI.2005.844159
  • Chen, Y., Liu, J., Li, M. (2021). Non-invasive assessment of intracranial wall shear stress using high-resolution magnetic resonance imaging in combination with computational fluid dynamics technique. Fundam Res, 2(2), 329–334. . https://doi.org/10.1016/j.fmre.2021.09.019
  • Colebank, M. J. (2021). Computational modeling of patient specific pulmonary hemodynamics. North Carolina State University.
  • Dalby, R. B., Eskildsen, S. F., Videbech, P., Rosenberg, R., & Østergaard, L. (2021). Cerebral hemodynamics and capillary dysfunction in late-onset major depressive disorder. Psychiatry Res Neuroimaging, 317, 111383. https://doi.org/10.1016/j.pscychresns.2021.111383
  • Davies, P. F. (2009). Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med, 6(1), 16–26. https://doi.org/10.1038/ncpcardio1397
  • Deng, F., Mu, C., Yang, L., Yi, R., Gu, M., & Li, K. (2021). The differentiation in image post-processing and 3D reconstruction during evaluation of carotid plaques from MR and CT data sources. Front Physiol, 12, 489. https://doi.org/10.3389/fphys.2021.645438
  • Dong, J., Wong, K. K. L., & Tu, J. (2013). Hemodynamics analysis of patient-specific carotid bifurcation: A CFD model of downstream peripheral vascular impedance. Int J Numer Method Biomed Eng, 29(4), 476–491. https://doi.org/10.1002/cnm.2529
  • Duan, Q., Wang, G., Wang, R. a(2020). SenseCare: A research platform for medical image informatics and interactive 3D visualization. Human-Computer Interaction (2020 Ed) (Vol. 2, pp. 15). https://doi.org/10.48550/arXiv.2004.07031
  • Eslami, P., Thondapu, V., Karady, J., Hartman, E. M. J., Jin, Z., Albaghdadi, M., Lu, M., Wentzel, J. J., & Hoffmann, U. (2020). Physiology and coronary artery disease: Emerging insights from computed tomography imaging based computational modeling. Int J Cardiovasc Imaging, 36(12), 2319–2333. https://doi.org/10.1007/s10554-020-01954-x
  • Esmaily Moghadam, M., Vignon-Clementel, I. E., Figliola, R., & Marsden, A. L. (2013). A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J Comput Phys, 244, 63–79. https://doi.org/10.1016/j.jcp.2012.07.035
  • Fan, Z., Liu, X., Zhang, Y., Zhang, N., Ye, X., & Deng, X. (2021). Hemodynamic impact of stenting on carotid bifurcation: A potential role of the stented segment and external carotid artery. Comput Math Methods Med, 2021, 1–9. https://doi.org/10.1155/2021/7604532
  • Feiger, B., Adebiyi, A., & Randles, A. (2021). Multiscale modeling of blood flow to assess neurological complications in patients supported by venoarterial extracorporeal membrane oxygenation. Comput Biol Med, 129, 104155. https://doi.org/10.1016/j.compbiomed.2020.104155
  • Feiger, B., Vardhan, M., Gounley, J. (2019). Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in image-derived vasculature. Int J Numer Method Biomed Eng, 35(6), e3198. https://doi.org/10.1002/cnm.3198
  • Ferrarini, A., Finotello, A., Salsano, G., Auricchio, F., Palombo, D., Spinella, G., Pane, B., & Conti, M. (2021). Impact of leg bending in the patient-specific computational fluid dynamics of popliteal stenting. Acta Mech Sin, 37(2), 279–291. https://doi.org/10.1007/s10409-021-01066-2
  • Fleeter, C. M., Geraci, G., Schiavazzi, D. E., Kahn, A. M., & Marsden, A. L. (2020). Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Comput Methods Appl Mech Eng, 365, 113030. https://doi.org/10.1016/j.cma.2020.113030
  • Fossan, F. E., Mariscal-Harana, J., Alastruey, J., & Hellevik, L. R. (2018). Optimization of topological complexity for one-dimensional arterial blood flow models. J R Soc Interface, 15(149), 20180546. https://doi.org/10.1098/rsif.2018.0546
  • Fujimura, S., Takao, H., Suzuki, T. (2018). Hemodynamics and coil distribution with changing coil stiffness and length in intracranial aneurysms. J Neurointerv Surg, 10(8), 797–801.
  • Gaidzik, F., Pathiraja, S., Saalfeld, S., Stucht, D., Speck, O., Thévenin, D., & Janiga, G. (2021). Hemodynamic data assimilation in a subject-specific circle of willis geometry. Clin Neuroradiol, 31(3), 643–651. https://doi.org/10.1007/s00062-020-00959-2
  • Gamage, P. T., Dong, P., Lee, J., Gharaibeh, Y., Zimin, V. N., Dallan, L. A. P., Bezerra, H. G., Wilson, D. L., & Gu, L. (2021). Hemodynamic alternations following stent deployment and post-dilation in a heavily calcified coronary artery: In silico and ex-vivo approaches. Comput Biol Med, 139, 104962. https://doi.org/10.1016/j.compbiomed.2021.104962
  • Garber, L., Khodaei, S., & Keshavarz-Motamed, Z. (2021). The critical role of lumped parameter models in patient-specific cardiovascular simulations. In Arch Comput Methods Eng (Vol. 29, pp. 1–24). Springer. https://link.springer.com/article/10.1007/s11831-021-09685-5#citeas
  • Gasser, T. C., Hedin, U., & Roy, J. (2021). The interaction of biochemical, biomechanical, and clinical factors of coronary disease. In Biomechanics of coronary atherosclerotic plaque. Elsevier (Vol. 4, pp. 171–190). Academic Press. https://doi.org/10.1016/B978-0-12-817195-0.00007-X
  • Ghouri, M. A., Gupta, N., Bhat, A. P., Thimmappa, N. D., Saboo, S. S., Khandelwal, A., & Nagpal, P. (2019). CT and MR imaging of the upper extremity vasculature: Pearls, pitfalls, and challenges. Cardiovasc Diagn Ther, 9(Suppl 1), S152. https://doi.org/10.21037/cdt.2018.09.15
  • Gimbrone, J. M. A., & Garcia-Cardeña, G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res, 118(4), 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301
  • Habibi, M., Dawson, S., & Arzani, A. (2020). Data-driven pulsatile blood flow physics with dynamic mode decomposition. Fluids, 5(3), 111. https://doi.org/10.3390/fluids5030111
  • Hameed, M., Prather, R., Divo, E., Kassab, A., Nykanen, D., Farias, M., & DeCampli, W. M. (2021). Computational fluid dynamics investigation of the novel hybrid comprehensive stage II operation. JTCVS Open, 7, 308–323. https://doi.org/10.1016/j.xjon.2021.04.009
  • Horn, J. D. (2018). Computational modeling of thrombus formation in aneurysms treated with shape memory polymer foam or bare metal coils. Doctoral thesis. https://oaktrust.library.tamu.edu/handle/1969.1/173432
  • Hossain, S. S., Starosolski, Z., Sanders, T., Johnson, M. J., Wu, M. C. H., Hsu, M.-C., Milewicz, D. M., & Annapragada, A. (2021). Image-based patient-specific flow simulations are consistent with stroke in pediatric cerebrovascular disease. Biomech Model Mechanobiol, 20(6), 2071–2084. https://doi.org/10.1007/s10237-021-01495-9
  • Izzo, R., Steinman, D., Manini, S., & Antiga, L. (2018). The vascular modeling toolkit: A Python library for the analysis of tubular structures in medical images. J Open Source Softw, 3(25), 745. https://doi.org/10.21105/joss.00745
  • Johnston, L., Allen, R., Hall Barrientos, P., Mason, A., & Kazakidi, A. (2021). Hemodynamic abnormalities in the aorta of turner syndrome girls. Front Cardiovasc Med, 8, 531. https://doi.org/10.3389/fcvm.2021.670841
  • Jones, A. R., Cetiner, O., & Smith, M. J. (2022). Physics and modeling of large flow disturbances: discrete gust encounters for modern air vehicles. In Annu Rev Fluid Mech (Vol. 54, pp. 469–493). https://doi.org/10.1146/annurev-fluid-031621-085520
  • Kadem, M., Garber, L., Abdelkhalek, M., Al-Khazraji, B. K., & Keshavarz-Motamed, Z. (2022). Hemodynamic modeling, medical imaging, and machine learning and their applications to cardiovascular interventions. IEEE Rev Biomed Eng, 16, 403–423. https://doi.org/10.1109/RBME.2022.3142058
  • Kim, M., Yun, J., Cho, Y., Shin, K., Jang, R., Bae, H.-J., & Kim, N. (2019). Deep learning in medical imaging. Neurospine, 16(4), 657. https://doi.org/10.14245/ns.1938396.198
  • König, C. S., Atherton, M., Cavazzuti, M., Gomm, C., & Ramachandran, S. (2021). The association of peak systolic velocity in the carotid artery with coronary heart disease: A study based on portable ultrasound. Proc Inst Mech Eng Part H J Eng Med, 235(6), 663–675. https://doi.org/10.1177/09544119211000482
  • Koseki, H., Miyata, H., Shimo, S. (2020). Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. Transl Stroke Res, 11(1), 80–92. https://doi.org/10.1007/s12975-019-0690-y
  • Krishnan, L., LaBelle, S. A., Ruehle, M. A., Weiss, J. A., Hoying, J. B., & Guldberg, R. E. (2021). Mechanical regulation of microvascular growth and remodeling. In Vasc Tissue Eng Regen Med (pp. 33–76). Springer, Cham. https://doi.org/10.1007/978-3-319-21056-8_19-1
  • Lareyre, F., Adam, C., Carrier, M., Dommerc, C., Mialhe, C., & Raffort, J. (2019). A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation. Sci Rep, 9(1), 1–14. https://doi.org/10.1038/s41598-019-50251-8
  • Lee, K. W., & Xu, X. Y. (2002). Modelling of flow and wall behaviour in a mildly stenosed tube. Med Eng Phys, 24(9), 575–586. https://doi.org/10.1016/S1350-4533(02)00048-6
  • Lesage, D., Angelini, E. D., Bloch, I., & Funka-Lea, G. (2009). A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med Image Anal, 13(6), 819–845. https://doi.org/10.1016/j.media.2009.07.011
  • Lian, J. (2010). Open source modeling of cardiovascular system: A brief overview. Open Pacing Electrophysiol Ther J, 3, 1. https://doi.org/10.2174/1876536X01003010001
  • Liang, L., Steinman, D. A., Brina, O., Chnafa, C., Cancelliere, N. M., & Pereira, V. M. (2019). Towards the clinical utility of CFD for assessment of intracranial aneurysm rupture–a systematic review and novel parameter-ranking tool. J Neurointerv Surg, 11(2), 153–158. https://doi.org/10.1136/neurintsurg-2018-014246
  • Liu, B. (2007). The influences of stenosis on the downstream flow pattern in curved arteries. Med Eng Phys, 29(8), 868–876. https://doi.org/10.1016/j.medengphy.2006.09.009
  • Lopes, D., Agujetas, R., Puga, H., Teixeira, J., Lima, R., Alejo, J. P., & Ferrera, C. (2021). Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. Int J Mech Sci, 207, 106650. https://doi.org/10.1016/j.ijmecsci.2021.106650
  • Lopes, D., Puga, H., Teixeira, J., & Lima, R. (2020). Blood flow simulations in patient-specific geometries of the carotid artery: A systematic review. J Biomech, 111, 110019. https://doi.org/10.1016/j.jbiomech.2020.110019
  • Mahutga, R. R. (2021). Experimental and computational mechanics of arteries in health and disease: An exploration of complex structures and simple mathematical models.University of Minnesota Digital Conservancy. https://hdl.handle.net/11299/223148.
  • Mirramezani, M., & Shadden, S. C. (2020). A distributed lumped parameter model of blood flow. Ann Biomed Eng, 48(12), 2870–2886. https://doi.org/10.1007/s10439-020-02545-6
  • Moccia, S., De Momi, E., El Hadji, S., & Mattos, L. S. (2018). Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics. Comput Methods Programs Biomed, 158, 71–91. https://doi.org/10.1016/j.cmpb.2018.02.001
  • Modi, B. N., Sankaran, S., Kim, H. J. (2019). Predicting the physiological effect of revascularization in serially diseased coronary arteries: Clinical validation of a novel CT coronary angiography–based technique. Circ Cardiovasc Interv, 12(2), e007577. https://doi.org/10.1161/CIRCINTERVENTIONS.118.007577
  • Morris, P. D., Narracott, A., von Tengg-Kobligk, H., Silva Soto, D. A., Hsiao, S., Lungu, A., Evans, P., Bressloff, N. W., Lawford, P. V., Hose, D. R., & Gunn, J. P. (2016). Computational fluid dynamics modelling in cardiovascular medicine. Heart, 102(1), 18–28. https://doi.org/10.1136/heartjnl-2015-308044
  • Mukherjee, D., Jani, N. D., Narvid, J., & Shadden, S. C. (2018). The role of circle of Willis anatomy variations in cardio-embolic stroke: A patient-specific simulation based study. Ann Biomed Eng, 46(8), 1128–1145. https://doi.org/10.1007/s10439-018-2027-5
  • Müller, J., Sahni, O., Li, X., Jansen, K. E., Shephard, M. S., & Taylor, C. A. (2005). Anisotropic adaptive finite element method for modelling blood flow. Comput Methods Biomech Biomed Engin, 8(5), 295–305. https://doi.org/10.1080/10255840500264742
  • Nannini, G., Caimi, A., Palumbo, M. C., Saitta, S., Girardi, L. N., Gaudino, M., Roman, M. J., Weinsaft, J. W., & Redaelli, A. (2021). Aortic hemodynamics assessment prior and after valve sparing reconstruction: A patient-specific 4D flow-based FSI model. Comput Biol Med, 135, 104581. https://doi.org/10.1016/j.compbiomed.2021.104581
  • Ngo, M. T., Kim, C. I., Jung, J., Chung, G. H., Lee, D. H., & Kwak, H. S. (2019). Four-dimensional flow magnetic resonance imaging for assessment of velocity magnitudes and flow patterns in the human carotid artery bifurcation: Comparison with computational fluid dynamics. Diagnostics, 9(4), 223. https://doi.org/10.3390/diagnostics9040223
  • Ninos, G., Bartzis, V., Merlemis, N., & Sarris, I. E. (2021). Uncertainty quantification implementations in human hemodynamic flows. Comput Methods Programs Biomed, 203, 106021. https://doi.org/10.1016/j.cmpb.2021.106021
  • Oglat, A. A., Matjafri, M. Z., Suardi, N., Oqlat, M. A., Abdelrahman, M. A., & Oqlat, A. A. (2018). A review of medical Doppler ultrasonography of blood flow in general and especially in common carotid artery. J Med Ultrasound, 26(1), 3. https://doi.org/10.4103/JMU.JMU_11_17
  • Olender, M. L. (2021). Computational processing and modeling of intravascular images precisely couple arterial morphology and biomechanics. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, February, 2021. http://dspace.mit.edu/handle/1721.1/7582
  • Ooij, P., & Van, Markl, M. (2020). Hemodynamic Aspects of Vessel Wall Imaging: 4D Flow. In Vessel Based Imaging Tech (pp. 297–330). Springer, Cham. 978-3-030-25248-9. https://doi.org/10.1007/978-3-030-25249-6_16
  • Pandey, R., Kumar, M., Majdoubi, J., Rahimi-Gorji, M., & Srivastav, V. K. (2020). A review study on blood in human coronary artery: Numerical approach. Comput Methods Programs Biomed, 187, 105243. https://doi.org/10.1016/j.cmpb.2019.105243
  • Papamanolis, L., Kim, H. J., Jaquet, C. (2021). Myocardial perfusion simulation for coronary artery disease: A coupled patient-specific multiscale model. Ann Biomed Eng, 49(5), 1432–1447. https://doi.org/10.1007/s10439-020-02681-z
  • Rafieian-Kopaei, M., Setorki, M., Doudi, M., Baradaran, A., & Nasri, H. (2014). Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med, 5(8), 927–946. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258672/
  • Rayz, V. L., Boussel, L., Acevedo-Bolton, G., Martin, A. J., Young, W. L., Lawton, M. T., Higashida, R., & Saloner, D. (2008). Numerical simulations of flow in cerebral aneurysms: Comparison of CFD results and in vivo MRI measurements. J Biomech Eng, 130(5), 5. https://doi.org/10.1115/1.2970056
  • Safikhani, H., Jabbari, E., Yousefi, M., & Tahmsbi, V. (2021). Numerical modeling and optimization of respirational emergency drug delivery device using computational fluid dynamics and response surface method. Int J Eng, 34(2), 547–555. https://www.ije.ir/article_122806.html
  • Saveljic, I. B., & Filipovic, N. D. (2021). Parametric modeling of blood flow and wall interaction in aortic dissection. In Comput Model Simul Examples Bioeng (pp. 175–218). Wiley. https://doi.org/10.1002/9781119563983.ch5
  • Saxena, A., Ng, E. Y. K., & Lim, S. T. (2019). Imaging modalities to diagnose carotid artery stenosis: Progress and prospect. Biomed Eng Online, 18(1), 1–23. https://doi.org/10.1186/s12938-019-0685-7
  • Scharf, R. E. (2018). Platelet signaling in primary haemostasis and arterial thrombus formation: Part 1. Hamostaseologie, 38(4), 203–210. https://doi.org/10.1055/s-0038-1675144
  • Sengupta, P. P., Shrestha, S., Berthon, B. (2020). Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist: Reviewed by the American college of cardiology healthcare innovation council. Cardiovasc Imaging, 13(9), 2017–2035. https://doi.org/10.1016/j.jcmg.2020.07.015
  • Settecase, F., & Rayz, V. L. (2021). Advanced vascular imaging techniques. In Handb Clin Neurol (Vol. 176, pp. 81–105). Elsevier. https://doi.org/10.1016/B978-0-444-64034-5.00016-X
  • Shankar, K. N., Zhang, Y., Sinno, T., Diamond, S. L., & Faeder, J. R. (2022). A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution. PLOS Comput Biol, 18(1), e1009850. https://doi.org/10.1371/journal.pcbi.1009850
  • Singh, A. V., Rosenkranz, D., Ansari, M. H. D., Singh, R., Kanase, A., Singh, S. P., Johnston, B., Tentschert, J., Laux, P., & Luch, A. (2020). Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction. Adv Intell Syst, 2(12), 2000084. https://doi.org/10.1002/aisy.202000084
  • Skopalik, S., Hall Barrientos, P., Matthews, J., Radjenovic, A., Mark, P., Roditi, G., & Paul, M. C. (2021). Image-based computational fluid dynamics for estimating pressure drop and fractional flow reserve across iliac artery stenosis: A comparison with in-vivo measurements. Int J Numer Method Biomed Eng, 37(12), e3437. https://doi.org/10.1002/cnm.3437
  • Sleight, E., Stringer, M. S., Marshall, I., Wardlaw, J. M., & Thrippleton, M. J. (2021). Cerebrovascular reactivity measurement using magnetic resonance imaging: A systematic review. Front Physiol, 12, 182. https://doi.org/10.3389/fphys.2021.643468
  • Smith, N., de Vecchi, A., McCormick, M., Nordsletten, D., Camara, O., Frangi, A. F., Delingette, H., Sermesant, M., Relan, J., Ayache, N., Krueger, M. W., Schulze, W. H. W., Hose, R., Valverde, I., Beerbaum, P., Staicu, C., Siebes, M., Spaan, J., Hunter, P., … Rezavi, R. (2011). euHeart: Personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus, 1(3), 349–364. https://doi.org/10.1098/rsfs.2010.0048
  • Smith, K. A., Merchant, S. S., Hsu, E. W., & Timmins, L. H. (2021). Effect of subject-specific, spatially reduced, and idealized boundary conditions on the predicted hemodynamic environment in the murine Aorta. Ann Biomed Eng, 49(12), 3255–3266. https://doi.org/10.1007/s10439-021-02851-7
  • Soares, A. A., Carvalho, F. A., & Leite, A. (2021). Effects of inlet velocity profile on the hemodynamics of the abdominal aorta bifurcation. J Brazilian Soc Mech Sci Eng, 43(6), 1–10. https://doi.org/10.1007/s40430-021-03002-8
  • Sorin, V., Barash, Y., Konen, E., & Klang, E. (2020). Creating artificial images for radiology applications using generative adversarial networks (GANs)–a systematic review. Acad Radiol, 27(8), 1175–1185. https://doi.org/10.1016/j.acra.2019.12.024
  • Spilker, R. L., Vignon-Clementel, I. E., Kim, H. J. J. A. F., Taylor, C. A., & Taylor, C. A. (2006). Patient-specific pulmonary hemodynamic simulations linking lumped-parameter boundary conditions to morphometric data. J Biomech, 39, S294–S295. https://doi.org/10.1016/S0021-9290(06)84143-6
  • Starodumov, I. O., Sokolov, S. Y., Alexandrov, D. V., Zubarev, A. Y., Bessonov, I. S., Chestukhin, V. V., & Blyakhman, F. A. (2022). Modelling of hemodynamics in bifurcation lesions of coronary arteries before and after myocardial revascularization. Philos Trans R Soc A, 380(2217), 20200303. https://doi.org/10.1098/rsta.2020.0303
  • Taylor, C. A., & Steinman, D. A. (2010). Image-based modeling of blood flow and vessel wall dynamics: Applications, methods and future directions. Ann Biomed Eng, 38(3), 1188–1203. https://doi.org/10.1007/s10439-010-9901-0
  • Thirugnanasambandam, M., Canchi, T., Piskin, S., Karmonik, C., Kung, E., Menon, P. G., Avril, S., & Finol, E. A. (2021). Design, development, and temporal evaluation of a magnetic resonance imaging-compatible in vitro circulation model using a compliant abdominal aortic aneurysm phantom. J Biomech Eng, 143(5), 5. https://doi.org/10.1115/1.4049894
  • Tomasina, C., Bodet, T., Mota, C., Moroni, L., & Camarero-Espinosa, S. (2019). Bioprinting vasculature: Materials, cells and emergent techniques. Materials (Basel), 12(17), 2701. https://doi.org/10.3390/ma12172701
  • Tran, J. S. (2018). Computational modelling and uncertainty quantification of blood flow in the coronary arteries. Stanford University.
  • Urschel, K., Tauchi, M., Achenbach, S., & Dietel, B. (2021). Investigation of wall shear stress in cardiovascular research and in clinical practice—from bench to bedside. Int J Mol Sci, 22(11), 5635. https://doi.org/10.3390/ijms22115635
  • Vignon-Clementel, I. E., Alberto Figueroa, C., Jansen, K. E., & Taylor, C. A. (2006). Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng, 195(29–32), 3776–3796. https://doi.org/10.1016/j.cma.2005.04.014
  • Vixège, F., Berod, A., Sun, Y. (2021). Physics-constrained intraventricular vector flow mapping by color Doppler. Phys Med Biol, 66(24), 245019. https://doi.org/10.1088/1361-6560/ac3ffe
  • vmtk. The vascular modelling toolkit. http://www.vmtk.org/. Accessed February. 13, 2022
  • Warey, A., Gao, J., & Grover, J. R. O. (2021). Generalization performance of a deep learning based engine-out emissions model. Energy AI, 5, 100080. https://doi.org/10.1016/j.egyai.2021.100080
  • Watson, M. C. (2021). In vitro methods to investigate embryonic cardiac development modulated by fluid flow. Tufts University ProQuest Dissertations Publishing.
  • Williamson, P. N., Docherty, P. D., Yazdi, S. G., Khanafer, A., Kabaliuk, N., Jermy, M., & Geoghegan, P. H. (2022). Review of the development of hemodynamic modeling techniques to capture flow behavior in arteries affected by aneurysm, atherosclerosis, and stenting. J Biomech Eng, 144(4), 4. https://doi.org/10.1115/1.4053082
  • Windisch, D., Bieberle, M., Bieberle, A., & Hampel, U. (2020). Control concepts for image-based structure tracking with ultrafast electron beam X-ray tomography. Trans Inst Meas Control, 42(4), 691–703. https://doi.org/10.1177/0142331219858048
  • Wu, X., Ono, M., Kawashima, H. (2021). Angiography-based 4-dimensional superficial wall strain and stress: A new diagnostic tool in the catheterization laboratory. Front Cardiovasc Med, 8, 590. https://doi.org/10.3389/fcvm.2021.667310
  • Xu, K., Li, B., Liu, J. (2021). Model-based evaluation of local hemodynamic effects of enhanced external counterpulsation. Comput Methods Programs Biomed, 214, 106540. https://doi.org/10.1016/j.cmpb.2021.106540
  • Yang, W., Hanley, F. L., Chan, F. P., Marsden, A. L., Vignon-Clementel, I. E., & Feinstein, J. A. (2018). Computational simulation of postoperative pulmonary flow distribution in Alagille patients with peripheral pulmonary artery stenosis. Congenit Heart Dis, 13(2), 241–250. https://doi.org/10.1111/chd.12556
  • Yao, Q., Zhu, H., Wang, W., Shen, Y., Liu, Z., Wang, J., & Shi, Z. (2021). Patient-specific hemodynamics modeling of carotid artery stenosis in a swine model based on 3D rotational angiography. Biomed Signal Process Control, 70, 102964. https://doi.org/10.1016/j.bspc.2021.102964
  • Youn, S. W., & From, L. J. (2022). 2d to 4d phase-contrast mri in the neurovascular system: Will it be a quantum jump or a fancy decoration? J Magn Reson Imaging, 55(2), 347–372. https://doi.org/10.1002/jmri.27430
  • Zhang, X. (2018). Four-chamber endocardial surface reconstruction from MR images and application to geometry and mechanics analysis on healthy subjects and mitral regurgitation patients. Auburn University. http://hdl.handle.net/10415/6319
  • Zhu, C., Li, Z., Ju, Y., & Zhao, X. (2021). Detection of carotid webs by CT angiography, high-resolution MRI, and ultrasound. J Neuroimaging, 31(1), 71–75. https://doi.org/10.1111/jon.12784
  • Zorzal, E. R., Sousa, M., Mendes, D., Dos Anjos, R. K., Medeiros, D., Paulo, S. F., Rodrigues, P., Mendes, J. J., Delmas, V., Uhl, J.-F., Mogorrón, J., Jorge, J. A., & Lopes, D. S. (2019). Anatomy studio: A tool for virtual dissection through augmented 3D reconstruction. Computers & Graphics, 85, 74–84. https://doi.org/10.1016/j.cag.2019.09.006