984
Views
1
CrossRef citations to date
0
Altmetric
BIOMEDICAL ENGINEERING

In-silico model development and validation of the L5-S1 spinal unit

ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2184446 | Received 10 Dec 2022, Accepted 21 Feb 2023, Published online: 09 Mar 2023

References

  • Adams, M. A., Lama, P., Zehra, U., & Dolan, P. (2015). Why do some intervertebral discs degenerate, when others (in the same spine) do not? Clinical Anatomy, 28(2), 195–18. https://doi.org/10.1002/ca.22404
  • Bogduk, N. (2005). Clinical biomechanics of lumbar spine and sacrum (Fourth). Elsevier.
  • Charriere, E., Sirey, F., & Zysset, P. K. (2003). A finite element model of the L5-S1 functional spinal unit: development and comparison with biomechanical tests in Vitro. Computer Methods in Biomechanics and Biomedical Engineering, 6(4), 249–261. https://doi.org/10.1080/10255840310001606099
  • Costi, J. J., Stokes, I. A., GardnerMorse, M., Laible, J. P., Scoffone, H. M., & Iatridis, J. C. (2007). Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: Motion that place disc tissue at risk injury. Journal of Biomechanics, 40(11), 2457–2466. https://doi.org/10.1016/j.jbiomech.2006.11.006
  • Deng, M., Xiang, Y., Wang, J., & Leung, J. C. S. (2017). Lumbar degenerative spondylolisthesis epidemiology: Asystematic review with afocus on gender-specific and age-specific prevalence. Journal of Orthopaedic Translation. https://doi.org/10.1016/j.jot.2016.11.001
  • Eberlein, R., Holzapfel, G. A., & Fro, M. (2004). Multi-segment FEA of the Human Lumbar Spine Including the Heterogeneity of the Annulus Fibrosus, 34, 147–163. https://doi.org/10.1007/s00466-004-0563-3.
  • Eberlein, R., Holzapfel, G. A., & Schulze-Bauer, C. A. J. (2001). An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Computer Methods in Biomechanics and Biomedical Engineering, 4(3), 209–229. https://doi.org/10.1080/10255840108908005
  • Fasser, M. R., Kuravi, R., Bulla, M., Snedeker, J. G., Farshad, M., & Widmer, J. (2022). A novel approach for tetrahedral-element-based finite element simulations of anisotropic hyperelastic intervertebral disc behavior. Frontiers in Bioengineering and Biotechnology, 10(December), 1–14. https://doi.org/10.3389/fbioe.2022.1034441
  • Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 3(6), 15–35. https://doi.org/10.1098/rsif.2005.0073
  • Goel, V. K., Monroe, B. T., Gilbertson, L. G., & Brinckmann, P. (1995). Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine, 20(6), 689–698. http://www.ncbi.nlm.nih.gov/pubmed/7604345
  • Graham, P. (2018). Lumbar Degenerative Disease With Intervertebral Disk Herniation, 37(1), 1–2. https://doi.org/10.1097/NOR.0000000000000427
  • Guan, Y., Yoganandan, N., Moore, J., Pintar, F. A., Zhang, J., Maiman, D. J., & Laud, P. (2007). Moment-rotation responses of the human lumbosacral spinal column. Journal of Biomechanics, 40(9), 1975–1980. https://doi.org/10.1016/j.jbiomech.2006.09.027
  • Guan, Y., Yoganandan, N., Zhang, J., Pintar, F. A., Cusick, J. F., Wolfla, C. E., & Maiman, D. J. (2006). Validation of a clinical finite element model of the human lumbosacral spine. Medical and Biological Engineering and Computing, 44(8), 633–641. https://doi.org/10.1007/s11517-006-0066-9
  • How, I., Wei, S., Kasat, N., & Keng, L. (2015). CASE REPORT – OPEN ACCESS international journal of surgery case reports A case report of 3-level degenerative spondylolisthesis with spinal canal stenosis. International Journal of Surgery Case Reports, 8, 120–123. https://doi.org/10.1016/j.ijscr.2014.10.018
  • Jones, A. C., & Wilcox, R. K. (2008). Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis. Medical Engineering & Physics, 30(10), 1287–1304. https://doi.org/10.1016/j.medengphy.2008.09.006
  • Little, J. P., Adam, C. J., Evans, J. H., Pettet, G. J., & Pearcy, M. J. (2007). Nonlinear finite element analysis of anular lesions in the L4/5 intervertebral disc. Journal of Biomechanics, 40(12), 2744–2751. https://doi.org/10.1016/j.jbiomech.2007.01.007
  • Łodygowski, T., Kakol, W., Wierszycki, M., & Ogurkowska, M. B. (2005). Three-dimensional nonlinear finite element model of lumbar intervertebral disc. Acta of Bioengineering and Biomechanics, 7(2), 29–37. https://doi.org/10.1115/1.3138670
  • Maheshwaran, S., Davies, A. M., Evans, N., Broadley, P., & Cassar-Pullicino, V. N. (1995). Sciatica in degenerative spondylolisthesis of the lumbar spine. Annals of the Rheumatic Diseases, 54(7), 539–543. https://doi.org/10.1136/ard.54.7.539
  • Manickam, P. S., & Roy, S. (2022). The biomechanical study of cervical spine: A Finite Element Analysis. The International Journal of Artificial Organs, 45(1), 89–95. https://doi.org/10.1177/0391398821995495
  • Moerman, K. M., Simms, C. K., & Nagel, T. (2016). Control of tension-compression asymmetry in Ogden hyperelasticity with application to soft tissue modelling. Journal of the Mechanical Behavior of Biomedical Materials, 56, 218–228. https://doi.org/10.1016/j.jmbbm.2015.11.027
  • Momeni Shahraki, N., Fatemi, A., Goel, V. K., & Agarwal, A. (2015). On the use of biaxial properties in modeling annulus as a Holzapfel–Gasser–Ogden Material. Frontiers in Bioengineering and Biotechnology, 3(June), 1–9. https://doi.org/10.3389/fbioe.2015.00069
  • Mooney, M. (1940). A Theory of Large Elastic Deformation. Journal of Applied Physics, 11(9), 582–592. https://doi.org/10.1063/1.1712836
  • Moramarco, V., Pérez Del Palomar, A., Pappalettere, C., & Doblaré, M. (2010). An accurate validation of a computational model of a human lumbosacral segment. Journal of Biomechanics, 43(2), 334–342. https://doi.org/10.1016/j.jbiomech.2009.07.042
  • Naserkhaki, S., Arjmand, N., Shirazi-Adl, A., Farahmand, F., & El-Rich, M. (2018). Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model. Journal of Biomechanics, 70, 33–42. https://doi.org/10.1016/j.jbiomech.2017.05.003
  • Naserkhaki, S., Jaremko, J. L., Adeeb, S., & El-Rich, M. (2016). On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study. Journal of Biomechanics, 49(6), 974–982. https://doi.org/10.1016/j.jbiomech.2015.09.050
  • Natarajan, R. N. (2006). Modeling changes in intervertebral disc mechanics with degeneration. The Journal of Bone and Joint Surgery (American), 88(2), 36. https://doi.org/10.2106/JBJS.F.00002
  • O’Connell, G. D., Sen, S., & Elliott, D. M. (2012). Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomechanics and Modeling in Mechanobiology, 11(3–4), 493–503. https://doi.org/10.1007/s10237-011-0328-9
  • Ogden, R. W. (1972). Large deformation isotropic elasticity – On the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567), 565–584. https://doi.org/10.1098/rspa.1972.0026
  • Polikeit, A., Ferguson, S. J., Nolte, L. P., & Orr, T. E. (2003). Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: Finite element analysis. European Spine Journal, 12(4), 413–420. http://link.springer.com/10.1007/s00586-002-0505-8
  • Ramakrishna, V. A. S., Chamoli, U., Viglione, L. L., Tsafnat, N., & Diwan, A. D. (2018a). The role of sacral slope in the progression of a bilateral spondylolytic defect at L5 to spondylolisthesis: A biomechanical investigation using finite element analysis. Global Spine Journal, 8(5), 460–470. https://doi.org/10.1177/2192568217735802
  • Ramakrishna, V. A. S., Chamoli, U., Viglione, L. L., Tsafnat, N., & Diwan, A. D. (2018b). The role of sacral slope in the progression of a bilateral spondylolytic defect at L5 to spondylolisthesis: A biomechanical investigation using finite element analysis. Global Spine Journal, 8(5), 460–470. https://doi.org/10.1177/2192568217735802
  • Rao, A. A., & Dumas, G. A. (1991). Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: A nonlinear finite element study. Journal of Biomedical Engineering, 13(2), 139–151. https://doi.org/10.1016/0141-5425(91)90061-B
  • Rivlin, R. S. (1948). Large elastic deformations of isotropic materials IV. further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(835), 379–397. https://doi.org/10.1098/rsta.1948.0024
  • Rohlmann, A., Zander, T., Schmidt, H., Wilke, H. J., & Bergmann, G. (2006). Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. Journal of Biomechanics, 39(13), 2484–2490. https://doi.org/10.1016/j.jbiomech.2005.07.026
  • Schwarzer, A. C., Aprill, C. N., Derby, R., Fortin, J., Kine, G., & Bogduk, N. (1995). The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine, 20(17), 1878–1883. https://doi.org/10.1097/00007632-199509000-00007
  • Sehgal, N. (2000) Internal Disc Disruption and Low Back Pain . Pain Physician, 3 ,2 , 144–157, PubMed ID: 16906194 .
  • Sengul, E., Ozmen, R., Yaman, M. E., & Demir, T. (2021). Influence of posterior pedicle screw fixation at L4–L5 level on biomechanics of the lumbar spine with and without fusion: A finite element method. BioMedical Engineering Online, 20(1), 1–19. https://doi.org/10.1186/s12938-021-00940-1
  • Shahraki, N. M. (2014) Finite element modeling and damage evaluation of annulus fibrosus. The University of Toledo.
  • Shirazi-Adl, S. A., Shrivastava, S. C., & Ahmed, A. M. (1984). Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Spine, 9(2), 120–134. http://www.ncbi.nlm.nih.gov/pubmed/6233710
  • Vinyas, V., Adhikari, R., & Bhat, N. S. (2020). Review on the progress in development of finite element models for functional spinal units: Focus on lumbar and lumbosacral levels. Malaysian Journal of Medicine and Health Science, 16(8), 66–74.
  • Vinyas, V., Adhikari, R., & Bhat, N. S. (2022). Subject-specific finite element modelling of the intervertebral disc using T2 mapped MRI. Materials Today: Proceedings, 62 (3),1575–1579. https://doi.org/10.1016/j.matpr.2022.03.104
  • Wagner, D. R., & Lotz, J. C. (2004). Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. Journal of Orthopaedic Research, 22(4), 901–909. https://doi.org/10.1016/j.orthres.2003.12.012
  • Weisse, B., Aiyangar, A. K., Affolter, C., Gander, R., Terrasi, G. P., & Ploeg, H. (2012). Determination of the translational and rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model. Journal of the Mechanical Behavior of Biomedical Materials, 13, 45–61. https://doi.org/10.1016/j.jmbbm.2012.04.002
  • White, A. A., & Panjabi, M. (1990). Clinical biomechanics of the spine(2) J.B. LIPPINCOTT COMPANY. https://doi.org/10.1097/BRS.0000000000002019
  • Xie, F., Zhou, H., Zhao, W., & Huang, L. (2017). A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model. In E. J. Ciaccio & F. Liu, Eds. Technology and health care (Vol. 25, no. S1, pp. S177–S187). IOS press. https://doi.org/10.3233/THC-171320
  • Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 66(5), 754–771. https://doi.org/10.5254/1.3538343
  • Zhang, Y., Li, Y., Xue, J., Li, Y., Yang, G., Wang, G., Li, T., & Wang, J. (2020). Combined effects of graded foraminotomy and annular defect on biomechanics after percutaneous endoscopic lumbar decompression: A finite element study. Journal of Healthcare Engineering, 2020, 1–11. https://doi.org/10.1155/2020/8820228
  • Zhu, G., Wu, Z., Fang, Z., Zhang, P., He, J., Yu, X., Ge, Z., Tang, K., Liang, D., Jiang, X., Liang, Z., & Cui, J. (2022). Effect of the in situ screw implantation region and angle on the stability of lateral lumbar interbody fusion: a finite element study. Orthopaedic Surgery, 14(7), 1506–1517. https://doi.org/10.1111/os.13312