1,969
Views
6
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Seasonal assessment of heavy metal contamination of groundwater in two major dumpsites in Sierra Leone

, , , , , & show all
Article: 2185955 | Received 30 Oct 2022, Accepted 25 Feb 2023, Published online: 06 Mar 2023

References

  • Abd El-Salam, M. M., & Abu-Zuid, G. I. (2015). Impact of landfill leachate on the groundwater quality: A case study in Egypt. Journal of Advanced Research, 6(4), 579–30. https://doi.org/10.1016/j.jare.2014.02.003
  • Aboyeji, O. S., & Eigbokhan, S. F. (2016). Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria. Journal of Environmental Management, 183, 333–341. https://doi.org/10.1016/j.jenvman.2016.09.002
  • Adeolu, A. O., Ada, O. V., Gbenga, A. A., & Adebayo, O. A. (2011). Assessment of groundwater contamination by leachate near a municipal solid waste landfill. African Journal of Environmental Science and Technology, 5(11), 933–940. https://doi.org/10.5897/AJEST11.272
  • Akbulut, N. E., & Tuncer, A. M. (2011). Accumulation of heavy metals with water quality parameters in KIzIlIrmak River Basin (Delice River) in Turkey. Environmental Monitoring and Assessment, 173(1–4), 387–395. https://doi.org/10.1007/s10661-010-1394-7
  • Alizamir, M., & Sobhanardakani, S. (2016). Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach Introduction 1. Journal of Advances in Environmental Health Research, 4(2), 68–77. http://jaehr.muk.ac.ir
  • Baghanam, A. H., Nourani, V., Aslani, H., & Taghipour, H. (2020). Spatiotemporal variation of water pollution near landfill site: Application of clustering methods to assess the admissibility of LWPI. Journal of Hydrology, 591, 125581. https://doi.org/10.1016/j.jhydrol.2020.125581
  • Barceloux, D. G., & Barceloux, D. (1999). Nickel. Journal of toxicology Clinical toxicology, 37(2), 239–258. https://doi.org/10.1081/CLT-100102423
  • Bayatzadeh Fard, Z., Ghadimi, F., & Fattahi, H. (2017). Use of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran. Journal of Mining and Environment, 8(1), 35–48. https://doi.org/10.22044/jme.2016.592
  • Bhagat, S. K., Tiyasha, T., Awadh, S. M., Tung, T. M., Jawad, A. H., & Yaseen, Z. M. (2021). Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models. Environmental Pollution, 268, 115663. https://doi.org/10.1016/j.envpol.2020.115663
  • Bhagat, S. K., Tung, T. M., & Yaseen, Z. M. (2020). Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. Journal of Cleaner Production, 250, 119473. https://doi.org/10.1016/j.jclepro.2019.119473
  • Bouchard, M., Laforest, F., Vandelac, L., Bellinger, D., & Mergler, D. (2007). Hair manganese and hyperactive behaviors: Pilot study of school-age children exposed through tap water. Environmental Health Perspectives, 115(1), 122–127. https://doi.org/10.1289/ehp.9504
  • Bowles, J. F. W., Lyon, I. C., Saxton, J. M., & Vaughan, D. J. (2000). The origin of platinum group minerals from the Freetown intrusion, Sierra Leone, inferred from osmium isotope systematics. Economic Geology, 95(3), 539–548. https://doi.org/10.2113/gsecongeo.95.3.539
  • Buragohain, M., Bhuyan, B., & Sarma, H. P. (2010). Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environmental Monitoring and Assessment, 170(1–4), 345–351. https://doi.org/10.1007/s10661-009-1237-6
  • Cabri, L. J., Oberthür, T., & Keays, R. R. (2022). Origin and depositional history of platinum-group minerals in placers – A critical review of facts and fiction. Ore Geology Reviews, 144, 104733. https://doi.org/10.1016/j.oregeorev.2022.104733
  • Cecelia F, F., Lenn G, G., Rafael S, N., Joseph F, C., & Yekeh, H. (2021). Evaluation of soil and groundwater quality at the New Georgia open dumpsite in Caldwell, Liberia. Journal of Soil and Water Science, 5(2), 197–204. https://doi.org/10.36959/624/445
  • Cerar, S., & Mali, N. (2016). Assessment of presence, origin and seasonal variations of persistent organic pollutants in groundwater by means of passive sampling and multivariate statistical analysis. Journal of Geochemical Exploration, 170, 78–93. https://doi.org/10.1016/j.gexplo.2016.08.016
  • Chalokwu, C. I. (2001). Petrology of the Freetown layered complex, Sierra Leone: Part II. Magma evolution and crystallisation conditions. Journal of African Earth Sciences, 32(3), 519–540. https://doi.org/10.1016/S0899-5362(01)90112-5
  • Chaturvedi, A., Bhattacharjee, S., Mondal, G. C., Kumar, V., Singh, P. K., & Singh, A. K. (2019). Exploring new correlation between hazard index and heavy metal pollution index in groundwater. Ecological Indicators, 97, 239–246. https://doi.org/10.1016/j.ecolind.2018.10.023
  • Cumar, S. K. M., & Nagaraja, B. (2011). Environmental impact of leachate characteristics on water quality. Environmental Monitoring and Assessment, 178(1–4), 499–505. https://doi.org/10.1007/s10661-010-1708-9
  • Das, N., Paul, S., Chatterjee, D., Banerjee, N., Majumder, N. S., Sarma, N., Sau, T. J., Basu, S., Banerjee, S., Majumder, P., Bandyopadhyay, A. K., States, J. C., & Giri, A. K. (2012). Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health, 12(1), 1. https://doi.org/10.1186/1471-2458-12-639
  • Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 219, 1077–1091. https://doi.org/10.1016/j.envpol.2016.09.008
  • Egbueri, J. C. (2018). Assessment of the quality of groundwaters proximal to dumpsites in Awka and Nnewi metropolises: a comparative approach. International Journal of Energy and Water Resources, 2(1–4), 33–48. https://doi.org/10.1007/s42108-018-0004-1
  • Egbueri, J. C. (2020). Heavy Metals Pollution Source Identification and Probabilistic Health Risk Assessment of Shallow Groundwater in Onitsha, Nigeria. Analytical Letters, 53(10), 1620–1638. https://doi.org/10.1080/00032719.2020.1712606
  • Egbueri, J. C., & Unigwe, C. O. (2019). An integrated indexical investigation of selected heavy metals in drinking water resources from a coastal plain aquifer in Nigeria. SN Applied Sciences, 1(11), 11. https://doi.org/10.1007/s42452-019-1489-x
  • Elumalai, V., Brindha, K., & Lakshmanan, E. (2017). Human exposure risk assessment due to heavy metals in groundwater by pollution index and multivariate statistical methods: A case study from South Africa. Water (Switzerland), 9, 4. https://doi.org/10.3390/w9040234
  • Etchie, A. T., Etchie, T. O., Adewuyi, G. O., Kannan, K., Wate, S. R., Sivanesan, S., Chukwu, A. U., & Carlo, M. (2013). Influence of seasonal variation on water quality in tropical water distribution system: is the disease burden significant? Water Research, 49, 186–196. https://doi.org/10.1016/j.watres.2013.11.023
  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental pollution, 114(3), 313–324. https://doi.org/10.1016/S0269-7491(00)00243-8
  • Fatoki, O. S., & Ayodele, E. T. (1991). Zinc and copper levels in tree barks as indicators of environmental pollution. Environment International, 17(5), 455–460. https://doi.org/10.1016/0160-4120(91)90279-Y
  • Frazer-Williams, R. K. (2017). Copper (Cu), lead (Pb) and Zinc (Zn) distribution in the Granvillebrook dumpsite soil, Sierra Leone. Toxicological Digestion, 1(2), 131–142.
  • Hafsa, N., Rushd, S., Al-Yaari, M., & Rahman, M. (2020). A generalized method for modeling the adsorption of heavy metals with machine learning algorithms. Water (Switzerland), 12(12), 1–22. https://doi.org/10.3390/w12123490
  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
  • Haloi, N., & Sarma, H. P. (2012). Heavy metal contaminations in the groundwater of Brahmaputra flood plain: An assessment of water quality in Barpeta District, Assam (India). Environmental Monitoring and Assessment, 184(10), 6229–6237. https://doi.org/10.1007/s10661-011-2415-x
  • He, Y., Li, B. B., Zhang, K. N., Li, Z., Chen, Y. G., & Ye, W. M. (2019). Experimental and numerical study on heavy metal contaminant migration and retention behavior of engineered barrier in tailings pond. Environmental Pollution, 252, 1010–1018. https://doi.org/10.1016/j.envpol.2019.06.072
  • Hingston, E. D. C., Frazer-Williams, R. A. D., Latiff, R. S. A., & Fode, D. V. A. (2002). Waste disposal in the Granville Brook dumpsite and its influence on the environment (Freetown, Sierra Leone). In Proceedings of 9th Congress of the International Assessment for Engineering Geology and, Environment, Durban, South Africa (pp. 16–20).
  • Homoncik, S. C., MacDonald, A. M., Heal, K. V., Ó Dochartaigh, B. É., & Ngwenya, B. T. (2010). Manganese concentrations in Scottish groundwater. Science of the Total Environment, 408(12), 2467–2473. https://doi.org/10.1016/j.scitotenv.2010.02.017
  • Huang, S. L., Wan, Z. H., & Smith, P. (2007). Numerical modeling of heavy metal pollutant transport-transformation in fluvial rivers. Journal of Hydraulic Research, 45(4), 451–461. https://doi.org/10.1080/00221686.2007.9521779
  • Hulskotte, J. H. J., van der Gon, H. A. C. D., Visschedijk, A. J. H., & Schaap, M. (2007). Brake wear from vehicles as an important source of diffuse copper pollution. Water Science and Technology, 56(1), 223–231. https://doi.org/10.2166/wst.2007.456
  • Karaouzas, I., Kapetanaki, N., Mentzafou, A., Kanellopoulos, T. D., & Skoulikidis, N. (2021). Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere, 263, 128192. https://doi.org/10.1016/j.chemosphere.2020.128192
  • Kumar, A., & Krishna, A. P. (2021). Groundwater quality assessment using geospatial technique based water quality index (WQI) approach in a coal mining region of India. Arabian Journal of Geosciences, 14(12), 1–26. https://doi.org/10.1007/s12517-021-07474-9
  • Lu, H., Li, H., Liu, T., Fan, Y., Yuan, Y., Xie, M., & Qian, X. (2019). Simulating heavy metal concentrations in an aquatic environment using artificial intelligence models and physicochemical indexes. Science of the Total Environment, 694, 133591. https://doi.org/10.1016/j.scitotenv.2019.133591
  • Mgbenu, C. N., & Egbueri, J. C. (2019). The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Applied Water Science, 9(1), 1–19. https://doi.org/10.1007/s13201-019-0900-5
  • Mokarram, M., Saber, A., & Sheykhi, V. (2020). Effects of heavy metal contamination on river water quality due to release of industrial effluents. Journal of Cleaner Production, 277, 123380. https://doi.org/10.1016/j.jclepro.2020.123380
  • Naminata, S., Kwa-Koffi, K. E., Marcel, K. A., & Marcellin, Y. K. (2018). Assessment and Impact of Leachate Generated by the Landfill City in Abidjan on the Quality of Ground Water and Surface Water (M’Badon Bay, Côte d’Ivoire). Journal of Water Resource and Protection, 10(1), 145–165.
  • Ng, S. M. Y., Wai, O. W. H., Li, Y. S., Li, Z. L., & Jiang, Y. (2009). Integration of a GIS and a complex three-dimensional hydrodynamic, sediment and heavy metal transport numerical model. Advances in Engineering Software, 40(6), 391–401. https://doi.org/10.1016/j.advengsoft.2008.09.001
  • Nyame, F. K., Tigme, J., Kutu, J. M., & Armah, T. K. (2012). Environmental Implications of the Discharge of Municipal Landfill Leachate into the Densu River and Surrounding Ramsar Wetland in the Accra Metropolis, Ghana. Journal of Water Resource and Protection, 4(8), 622. http://dx.doi.org/10.4236/jwarp.2012.48072
  • Ouyang, Y., Nkedi-kizza, P., Wu, Q. T., Shinde, D., & Huang, C. H. (2006). Assessment of seasonal variations in surface water quality. Water research, 40(20), 3800–3810. https://doi.org/10.1016/j.watres.2006.08.030
  • Paolalsiam, S., Rama, V., & Kurakalva, M. (2021). Comprehensive assessment of groundwater quality using heavy metal pollution indices and geospatial technique: a case study from Wanaparthy watershed of upper Krishna River basin, Telangana. Environmental Earth Sciences, 80(17), 1–16. https://doi.org/10.1007/s12665-021-09794-1
  • Pejman, A., Nabi Bidhendi, G., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: A case study. Ecological Indicators, 58, 365–373. https://doi.org/10.1016/j.ecolind.2015.06.012
  • Rahman, M. A. T. M. T., Paul, M., Bhoumik, N., Hassan, M., & Alam, K. (2020). Heavy metal pollution assessment in the groundwater of the Meghna Ghat industrial area, Bangladesh, by using water pollution indices approach. Applied Water Science, 1–15. https://doi.org/10.1007/s13201-020-01266-4
  • Raikar, R. V., & Sneha, M. K. (2012). Water quality analysis of Bhadravathi taluk using GIS - a case study. International Journal Of Environmental Science, 2(4), 2443–2453. https://doi.org/10.6088/ijes.00202030125
  • Raju, N. J., Gossel, W., & Sudhakar, M. (2015). Management of natural resources in a changing environment. Management of Natural Resources in a Changing Environment. 1–301. https://doi.org/10.1007/978-3-319-12559-6
  • Raju, V. K., Somashekar, R. K., & Prakash, K. L. (2012). Heavy metal status of sediment in river Cauvery, Karnataka. Environmental Monitoring and Assessment, 184(1), 361–373. https://doi.org/10.1007/s10661-011-1973-2
  • Razali, A., Norkhadijah, S., Ismail, S., Awang, S., Praveena, M., & Abidin, E. Z. (2020). The impact of seasonal change on river water quality and dissolved metals in mountainous agricultural areas and risk to human health. Environmental Forensics, 21(2), 195–211. https://doi.org/10.1080/15275922.2020.1728434
  • Rezaei, A., Hassani, H., Fard Mousavi, S. B., & Jabbari, N. (2019a). Evaluation of Heavy Metals Concentration in Jajarm Bauxite Deposit in Northeast of Iran Using Environmental Pollution Indices. Malaysian Journal of Geosciences, 3(1), 12–20. https://doi.org/10.26480/mjg.01.2019.12.20
  • Rezaei, A., Hassani, H., & Jabbari, N. (2019b). Evaluation of groundwater quality and assessment of pollution indices for heavy metals in North of Isfahan Province, Iran. Sustainable Water Resources Management, 5(2), 491–512. https://doi.org/10.1007/s40899-017-0209-1
  • Rivera-Rodríguez, D. A., Beltrán-Hernández, R. I., Lucho-Constantino, C. A., Coronel-Olivares, C., Hernández-González, S., Villanueva-Ibáñez, M., Nolasco-Arizmendi, V., & Vázquez-Rodríguez, G. A. (2019). Water quality indices for groundwater impacted by geogenic background and anthropogenic pollution: case study in Hidalgo, Mexico. International Journal of Environmental Science and Technology, 16(5), 2201–2214. https://doi.org/10.1007/s13762-018-1852-2
  • Rizwan, K. M., Thirukumaran, V., & Suresh, M. (2021). Assessment and source identification of heavy metal contamination of groundwater using geospatial technology in Gadilam River basin, Tamil Nadu, India. Applied Water Science, 11(6), 1–24. https://doi.org/10.1007/s13201-021-01436-y
  • Sankoh, A. A., Komba, T., Laar, C., Derkyi, N. S. A., & Frazer-Williams, R. (2022a). Application of Multivariate and Geospatial Techniques to Assess Groundwater Quality of Two Major Dumpsites in Sierra Leone. Environmental Nanotechnology Monitoring and Management, 18, 100753. https://doi.org/10.1016/j.enmm.2022.100753
  • Sankoh, A. A., Laar, C., Rashid, A., & Frazer-williams, R. A. D. (2022b). Coupling multivariate analysis and Bayesian isotope mixing model to assess the origin and quality of groundwater in the Freetown layered complex, Sierra Leone. Journal of African Earth Sciences, 198, 104808. https://doi.org/10.1016/j.jafrearsci.2022.104808
  • Sappa, G., Ergul, S., Ferranti, F., & Sweya, L. N. (2015). Effects of seasonal change and seawater intrusion on water quality for drinking and irrigation purposes, in coastal aquifers of Dar es Salaam, Tanzania. Journal of African Earth Sciences, 105, 64–84. https://doi.org/10.1016/j.jafrearsci.2015.02.007
  • Shahid, S. U., Iqbal, J., & Hasnain, G. (2014). Groundwater quality assessment and its correlation with gastroenteritis using GIS: a case study of Rawal Town, Rawalpindi, Pakistan. Environmental Monitoring and Assessment, 186(11), 7525–7537. https://doi.org/10.1007/s10661-014-3945-9
  • Sharma, R., Kumar, A., Singh, N., & Sharma, K. (2021). Impact of seasonal variation on water quality of Hindon River: physicochemical and biological analysis. SN Applied Sciences, 3(1), 1–11. https://doi.org/10.1007/s42452-020-03986-3
  • Shrivastava, A. K. (2009). A review on copper pollution.pdf. Indian Journal of Environmental Protection, 29(6), 552–560.
  • Singh, A. K., Raj, B., Tiwari, A. K., & Mahato, M. K. (2013). Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India. Environmental Earth Sciences, 70(3), 1225–1247. https://doi.org/10.1007/s12665-012-2209-7
  • Somani, M., Datta, M., Gupta, S. K., Sreekrishnan, T. R., & Ramana, G. V. (2019). Comprehensive assessment of the leachate quality and its pollution potential from six municipal waste dumpsites of India. Bioresource Technology Reports, 6, 198–206. https://doi.org/10.1016/j.biteb.2019.03.003
  • Tiwari, A. K., Kumar, P., Abhay, S., & Singh, K. (2016). Estimation of heavy metal contamination in groundwater and development of a heavy metal pollution index by using GIS technique. Bulletin of Environmental Contamination and Toxicology, 96(4), 508–515. https://doi.org/10.1007/s00128-016-1750-6
  • Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources, 3(4), 291–303. https://doi.org/10.1007/s42108-019-00039-3
  • Umeji, A. C. (1983). Geochemistry and mineralogy of the Freetown layered basic igneous complex of Sierra Leone. Chemical Geology, 39(1–2), 17–38. https://doi.org/10.1016/0009-2541(83)90070-0
  • Venkatesan, G., Subramani, T., Sathya, U., & Roy, P. D. (2020). Geochemistry seasonal changes in groundwater composition in an industrial center of south India and quality evaluation for consumption and health risk using geospatial methods. Geochemistry, 80(4), 125651. https://doi.org/10.1016/j.chemer.2020.125651
  • Wedeen, R. P., & Qiant, L. (1991). Chromium-induced kidney disease. Environmental health perspectives, 92, 71–74. https://doi.org/10.1289/ehp.92-1519395
  • Yidana, S. M., Banoeng-yakubo, B., & Akabzaa, T. M. (2010). Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58(2), 220–234. https://doi.org/10.1016/j.jafrearsci.2010.03.003
  • Yousry, M. M. (2011). Identification of pollution sources and homogenous regions in lake Nasser water: A multivariate statistical analysis. Proceedings of the 4th Global Fisheries and Aquaculture Research Conference, the Egyptian International Center for Agriculture, Giza, Egypt, 15(3), 151–163.
  • Zhuang, Q., Li, G., & Liu, Z. (2018). Distribution, source and pollution level of heavy metals in river sediments from South China. Catena, 170, 386–396. https://doi.org/10.1016/j.catena.2018.06.037