811
Views
2
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

Medium-term ionospheric response to the solar and geomagnetic conditions at low-latitude stations of the East African sector

ORCID Icon &
Article: 2186563 | Received 01 Oct 2022, Accepted 25 Feb 2023, Published online: 29 Mar 2023

References

  • Abdu, M. A., & Brum, C. G. M. (2009). Electrodynamics of the vertical coupling processes in the atmosphere-ionosphere system of the low latitude region. Earth, Planets and Space, 61(4), 385–21. https://doi.org/10.1186/BF03353156
  • Aggarwal, M., Joshi, H., Iyer, K., Kwak, Y.-S., Lee, J., Chandra, H., & Cho, K. (2012). Day-to-day variability of equatorial anomaly in gps-tec during low solar activity period. Advances in Space Research, 49(12), 1709–1720. https://doi.org/10.1016/j.asr.2012.03.005
  • Appleton, E. V., & Barnett, M. A. (1925). Local reflection of wireless waves from the upper atmosphere. Nature, 115(2888), 333–334. https://doi.org/10.1038/115333a0
  • Aragaw, M., Gebiregiorgis, A., & Tsegaye, K. (2019). Solar activity and geomagnetic storm effects on gps ionospheric tec over Ethiopia. Momona Ethiopian Journal of Science, 11(2), 276–300. https://doi.org/10.4314/mejs.v11i2.7
  • Blanch, E., Marsal, S., Segarra, A., Torta, J., Altadill, D., & Curto, J. (2013). Space weather effects on earth’s environment associated to the 24–25 October 2011 geo- magnetic storm. Space Weather, 11(4), 153–168. https://doi.org/10.1002/swe.20035
  • Breit, G., & Tuve, M. A. (1925). A radio method of estimating the height of the conducting layer. Nature, 116(2914), 357. https://doi.org/10.1038/116357a0
  • Buresova, D., Lastovicka, J., Hejda, P., & Bochnicek, J. (2014). Ionospheric disturbances under low solar activity conditions. Advances in Space Research, 54(2), 185–196. https://doi.org/10.1016/j.asr.2014.04.007
  • Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth. Proceedings of the Physical Society (1926-1948), 43(1), 26. https://doi.org/10.1088/0959-5309/43/1/305
  • Choi, B.-K., Lee, S.-J., & Park, J.-U. (2011). Monitoring the ionospheric total electron content variations over the Korean peninsula using a gps network during geomagnetic storms. Earth, Planets and Space, 63(6), 469–476. https://doi.org/10.5047/eps.2011.03.004
  • De Abreu, A., Fagundes, P., Gende, M., Bolaji, O., De Jesus, R., & Brunini, C. (2014). Investigation of ionospheric response to two moderate geomagnetic storms using gps–tec measurements in the South American and African sectors during the ascending phase of solar cycle 24. Advances in Space Research, 53(9), 1313–1328. https://doi.org/10.1016/j.asr.2014.02.011
  • De Abreu, A., Fagundes, P., Sahai, Y., de Jesus, R., Bittencourt, J., Brunini, C., Gende, M., Pillat, V., Lima, W., Abalde, J., & Pimenta, A. A. (2010). Hemispheric asymmetries in the ionospheric response observed in the American sector during an intense geomagnetic storm. Journal of Geophysical Research: Space Physics, 115(A12). https://doi.org/10.1029/2010JA015661
  • Fagundes, P. R., Cardoso, F., Fejer, B., Venkatesh, K., Ribeiro, B., & Pillat, V. (2016). Positive and negative gps-tec ionospheric storm effects during the extreme space weather event of march 2015 over the Brazilian sector. Journal of Geophysical Research: Space Physics, 121(6), 5613–5625. https://doi.org/10.1002/2015JA022214
  • Fejer, B. G., Jensen, J. W., & Su, S.-Y. (2008). Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophysical Research Letters, 35(20). https://doi.org/10.1029/2008GL035584
  • Gao, Shan. (2008). Monitoring and modelling Hong Kong ionosphere using regional gps networks. Hong Kong Polytechnic University. https://theses.lib.polyu.edu.hk/handle/200/5267
  • Goncharenko, L., Foster, J., Coster, A., Huang, C., Aponte, N., & Paxton, L. (2007). Observations of a positive storm phase on September 10, 2005. Journal of Atmospheric and solar-terrestrial Physics, 69(10–11), 1253–1272. https://doi.org/10.1016/j.jastp.2006.09.011
  • Guo, J., Li, W., Liu, X., Kong, Q., Zhao, C., Guo, B., & Houlie, N. (2015). Temporal-spatial variation of global gps-derived total electron content, 1999–2013. PloS one, 10(7), e0133378. https://doi.org/10.1371/journal.pone.0133378
  • Heaviside, O. (1902). Telegraphy i theory. Encyclopedia Britannica, 33, 213–218.
  • Huang, C.-S. (2012). Statistical analysis of dayside equatorial ionospheric electric fields and electrojet currents produced by magnetospheric substorms during saw- tooth events. Journal of Geophysical Research: Space Physics, 117(A2). https://doi.org/10.1029/2011JA017398
  • Huang, C.-S., Foster, J., Goncharenko, L., Erickson, P., Rideout, W., & Coster, A. (2005). A strong positive phase of ionospheric storms observed by the millstone hill incoherent scatter radar and global gps network. Journal of Geophysical Research: Space Physics, 110(A6). https://doi.org/10.1029/2004JA010865
  • Huang, C.-S., & Yumoto, K. (2006). Quantification and hemispheric asymmetry of low-latitude geomagnetic disturbances caused by solar wind pressure enhancements. Journal of Geophysical Research: Space Physics, 111(A9). https://doi.org/10.1029/2006JA011831
  • Ikubanni, S., Adebesin, B., Adebiyi, S., & Adeniyi, J. (2013). Relationship between f2 layer critical frequency and solar activity indices during different solar epochs. 94.20. dj; 96.60. qd. NISCAIR-CSIR, India.
  • Iyer, K., Jadav, R., Jadeja, A., Manoharan, P., Sharma, S., & Vats, H. O. (2006). Space weather effects of coronal mass ejection. Journal of Astrophysics and Astronomy, 27(2–3), 219–226. https://doi.org/10.1007/BF02702524
  • Jakowski, N., Fichtelmann, B., & Jungstand, A. (1991). Solar activity control of ionospheric and thermospheric processes. Journal of Atmospheric and Terrestrial Physics, 53(11–12), 1125–1130. https://doi.org/10.1016/0021-9169(91)90061-B
  • Jee, G., Lee, H.-B., & Solomon, S. C. (2014). Global ionospheric total electron contents (tecs) during the last two solar minimum periods. Journal of Geophysical Research: Space Physics, 119(3), 2090–2100. https://doi.org/10.1002/2013JA019407
  • Kassa, T., Tilahun, S., & Damtie, B. (2017). Solar activity indices as a proxy for the variation of ionospheric total electron content (TEC) over Bahir dar, Ethiopia during the year 2010–2014. Advances in Space Research, 60(6), 1237–1248. https://doi.org/10.1016/j.asr.2017.06.024
  • Kennelly, A. E. (1902). On the elevation of the electrically-conducting strata of the earth’s atmosphere. Electrical World and Engineer, 39(11), 473.
  • Komjathy, A. (1997). Global ionospheric total electron content mapping using the Global Positioning System. 1997. 248 f. University of New Brunswick, Fredericton, New Brunswick, Canada. Ph.D. thesis Ph. D. dissertation–Department of Geodesy and Geomatics Engineering. Technical Report No. 188.
  • Kumar, S., & Singh, A. (2009). Variation of ionospheric total electron content in Indian low latitude region of the equatorial anomaly during may 2007–April 2008. Advances in Space Research, 43(10), 1555–1562. https://doi.org/10.1016/j.asr.2009.01.037
  • Kutiev, I., Otsuka, Y., Pancheva, D., & Heelis, R. (2012). Response of low-latitude ionosphere to medium-term changes of solar and geomagnetic activity. Journal of Geophysical Research: Space Physics, 117(A8). https://doi.org/10.1029/2012JA017641
  • Kutiev, I., Tsagouri, I., Perrone, L., Pancheva, D., Mukhtarov, P., Mikhailov, A., Lastovicka, J., Jakowski, N., Buresova, D., Blanch, E., Andonov, B., Altadill, D., Magdaleno, S., Parisi, M., & Miquel Torta, J. (2013). Solar activity impact on the earth’s upper atmosphere. Journal of Space Weather and Space Climate, 3(A06), A06. https://doi.org/10.1051/swsc/2013028
  • Laštovička, J. (2021). The best solar activity proxy for long-term ionospheric investigations. Advances in Space Research, 68(6), 2354–2360. https://doi.org/10.1016/j.asr.2021.06.032
  • Liu, L., & Chen, Y. (2009). Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations. Journal of Geophysical Research: Space Physics, 114(A10), A10311. https://doi.org/10.1029/2009JA014533
  • Liu, L., Wan, W., Ning, B., Pirog, O., & Kurkin, V. (2006). Solar activity variations of the ionospheric peak electron density. Journal of Geophysical Research: Space Physics, 111(A8). https://doi.org/10.1029/2006JA011598
  • Maruyama, T. (2010). Solar proxies pertaining to empirical ionospheric total electron content models. Journal of Geophysical Research: Space Physics, 115(A4). https://doi.org/10.1029/2009JA014890
  • Ogwala, A., Somoye, E. O., Ogunmodimu, O., Adeniji-Adele, R. A., Onori, E. O., Oyedokun, O., & Iheonu, E. (2018). Variation in total electron content with sunspot number during the ascending and maximum phases of solar cycle 24 at birnin kebbi. Annales Geophysicae Discussions, 1–22. https://doi.org/10.5194/angeo-2018-95
  • Rama Rao, P., Gopi Krishna, S., Niranjan, K., & Prasad, D. 2006. Temporal and spatial variations in tec using simultaneous measurements from the Indian gps network of receivers during the low solar activity period of 2004–2005. In Annales Geophysicae, 24(12), 3279–3292. Copernicus GmbH volume 24. https://doi.org/10.5194/angeo-24-3279-2006.
  • Ratcliffe, J. A. (1972). An introduction to ionosphere and magnetosphere. CUP Archive. https://www.osti.gov/biblio/4006948
  • Schunk, R., & Sojka, J. J. (1996). Ionosphere-thermosphere space weather issues. Journal of Atmospheric and Terrestrial Physics, 58(14), 1527–1574. https://doi.org/10.1016/0021-9169(96)00029-3
  • Taylor, J. (1903). Characteristics of electric earth-current disturbances, and their origin. Proceedings of the Royal Society of London, 71(467–476), 225–227. https://doi.org/10.1098/rspl.1902.0088
  • Tyagi, T. R. (1974). Electron content and its variation over lindau. Journal of Atmospheric and Terrestrial Physics, 36(3), 475–487. https://doi.org/10.1016/0021-9169(74)90127-5
  • Wanninger, L. (1993). Effects of the equatorial ionosphere on. GPS world. Institut for Erdmessung, University Hannover.
  • Wei, Y., Zhao, B., Li, G., & Wan, W. (2015). Electric field penetration into earth’s ionosphere: A brief review for 2000–2013. Science Bulletin, 60(8), 748–761. https://doi.org/10.1007/s11434-015-0749-4