1,037
Views
1
CrossRef citations to date
0
Altmetric
CIVIL & ENVIRONMENTAL ENGINEERING

A prediction model for flexural strength of corroded prestressed concrete beam using artificial neural network

, , &
Article: 2187657 | Received 08 Nov 2022, Accepted 25 Feb 2023, Published online: 10 May 2023

References

  • Abuodeh, O. R., Abdalla, J. A., & Hawileh, R. A. (2020). Prediction of shear strength and behavior of rc beams strengthened with externally bonded frp sheets using machine learning techniques. Composite Structures, 234, 111698. https://doi.org/10.1016/j.compstruct.2019.111698
  • Ahmadi, M., Kheyroddin, A., & Kioumarsi, M. (2021). Prediction models for bond strength of steel reinforcement with consideration of corrosion. Materials Today: Proceedings, 45, second International Conference on Aspects of Materials Science and Engineering (ICAMSE 2021), 5829–27. https://doi.org/10.1016/j.matpr.2021.03.263
  • Alabduljabbar, H., Haido, J. H., Alyousef, R., Yousif, S. T., McConnell, J., Wakil, K., & Jermsittiparsert, K. (2020). Prediction of the flexural behavior of corroded concrete beams using combined method. Structures, 25, 1000–1008. https://doi.org/10.1016/j.istruc.2020.03.057
  • Amiri, M., & Hatami, F. (2022). Prediction of mechanical and durability characteristics of concrete including slag and recycled aggregate concrete with artificial neural networks (anns). Construction and Building Materials, 325, 126839. https://doi.org/10.1016/j.conbuildmat.2022.126839
  • Angst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51, 1–20. https://doi.org/10.1617/s11527-017-1131-6
  • Bardhan, A., Biswas, R., Kardani, N., Iqbal, M., Samui, P., Singh, M., & Asteris, P. G. (2022). A novel integrated approach of augmented grey wolf optimizer and ann for estimating axial load carrying-capacity of concrete-filled steel tube columns. Construction and Building Materials, 337, 127454. https://doi.org/10.1016/j.conbuildmat.2022.127454
  • Belletti, B., Rodrãŋguez, J., Andrade, C., Franceschini, L., Sãąnchez Montero, J., & Vecchi, F. (2020). Experimental tests on shear capacity of naturally corroded prestressed beams. Structural Concrete, 21(5), 1777–1793. https://doi.org/10.1002/suco.202000205
  • Cai, B., Liang Pan, G., & Fu, F. (2020). Prediction of the postfire flexural capacity of rc beam using ga-bpnn machine learning. Journal of Performance of Constructed Facilities, 34(6), 04020105. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001514
  • Congro, M., de Alencar Monteiro, V. M., Brandãčo, A. L., Dos Santos, B. F., Roehl, D., & de Andrade Silva, F. (2021). Prediction of the residual flexural strength of fiber reinforced concrete using artificial neural networks. Construction and Building Materials, 303, 124502. https://doi.org/10.1016/j.conbuildmat.2021.124502
  • Dai, L., Bian, H., Wang, L., Potier-Ferry, M., & Zhang, J. (2020). Prestress loss diagnostics in pretensioned concrete structures with corrosive cracking. Journal of Structural Engineering, 146(3), 04020013. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002554
  • Dai, L., Chen, Y., Wang, L., & Ma, Y. (2021). Secondary Anchorage and residual prestressing force in locally corroded pt beams after strand fracture. Construction and Building Materials, 275, 122–137. https://doi.org/10.1016/j.conbuildmat.2020.122137
  • Dai, L., Chen, H., Wang, L., Ma, Y., & Zhang, J. (2021). Transfer length prediction in pre-tensioned concrete beams under corrosive cracking. Structures, 30, 938–948. https://doi.org/10.1016/j.istruc.2021.01.064
  • Dai, L., Wang, L., Bian, H., Zhang, J., Zhang, X., & Ma, Y. (2019). Flexural capacity prediction of corroded prestressed concrete beams incorporating bond degradation. Journal of Aerospace Engineering, 32(4), 04019027. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001022
  • Dai, L., Wang, L., Zhang, J., & Zhang, X. (2016). A global model for corrosion-induced cracking in prestressed concrete structures. Engineering Failure Analysis, 62, 263–275. https://doi.org/10.1016/j.engfailanal.2016.01.013
  • ElBatanouny, M. K., Nanni, A., Ziehl, P. H., & Matta, F. (2015). Condition assessment of prestressed concrete beams using cyclic and monotonic load tests. ACI Structural Journal, 112(1), 81–90. https://doi.org/10.14359/51687181
  • Erdem, H. (2010). Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks. Advances in Engineering Software, 41(2), 270–276. https://doi.org/10.1016/j.advengsoft.2009.07.006
  • Fu, B., & Feng, D.-C. (2021). A machine learning-based time-dependent shear strength model for corroded reinforced concrete beams. Journal of Building Engineering, 36, 102–118. https://doi.org/10.1016/j.jobe.2020.102118
  • Gãijnther, F., & Fritsch, S. (2010). neuralnet: Training of Neural Networks. The R Journal, 2(1), 30–38. https://doi.org/10.32614/RJ-2010-006
  • Gao, Y., Suryanto, B., Chai, H., & Forde, M. (2021). Evaluating the effect of corrosion on shear-critical rc beams by integrated ndt. Developments in the Built Environment, 7, 100050. https://doi.org/10.1016/j.dibe.2021.100050
  • Hansapinyo, C., Vimonsatit, V., Matsushima, M., & Limkatanyu, S. (2021). Critical amount of corrosion and failure behavior of flexural reinforced concrete beams. Construction and Building Materials, 270, 121448. https://doi.org/10.1016/j.conbuildmat.2020.121448
  • Huang, L., Chen, J., & Tan, X. (2022). Bp-ann based bond strength prediction for frp reinforced concrete at high temperature. Engineering Structures, 257, 114026. https://doi.org/10.1016/j.engstruct.2022.114026
  • Jeon, C.-H., Lee, J.-B., Lon, S., & Shim, C.-S. (2019). Equivalent material model of corroded prestressing steel strand. Journal of Materials Research and Technology, 8(2), 2450–2460. https://doi.org/10.1016/j.jmrt.2019.02.010
  • Jeon, C.-H., Nguyen, C. D., & Shim, C.-S. (2020). Assessment of mechanical properties of corroded prestressing strands. Applied Sciences, 10(12), 4055. https://doi.org/10.3390/app10124055
  • Karimipour, A., Mohebbi Najm Abad, J., & Fasihihour, N. (2021). Predicting the load-carrying capacity of gfrp-reinforced concrete columns using ann and evolutionary strategy. Composite Structures, 275, 114470. https://doi.org/10.1016/j.compstruct.2021.114470
  • Liu, Y., & Fan, Y. (2019). Experimental study on flexural behavior of prestressed concrete beams reinforced by cfrp under chloride environment. Advances in Civil Engineering, 2019, 2424518. https://doi.org/10.1155/2019/2424518
  • Li, F., & Yuan, Y. (2013). Effects of corrosion on bond behavior between steel strand and concrete. Construction and Building Materials, 38 25th Anniversary Session for ACI 228 âĂŞ Building on the Past for the Future of NDT of Concrete, 413–422. https://doi.org/10.1016/j.conbuildmat.2012.08.008
  • Lu, Z.-H., Zhou, Q.-H., Li, H., & Zhao, Y.-G. (2021). A new empirical model for residual flexural capacity of corroded post-tensioned prestressed concrete beams. Structures, 34, 4308–4321. https://doi.org/10.1016/j.istruc.2021.10.005
  • Mansour, M., Dicleli, M., Lee, J., & Zhang, J. (2004). Predicting the shear strength of reinforced concrete beams using artificial neural networks. Engineering Structures, 26(6), 781–799. https://doi.org/10.1016/j.engstruct.2004.01.011
  • Menoufy, A. E., & Soudki, K. (2014). Flexural behavior of corroded pretensioned girders repaired with cfrp sheets. PCI Journal, 129–143. https://doi.org/10.15554/pcij.03012014.129.143.592
  • Moawad, M., El-Karmoty, H., & El Zanaty, A. (2018). Behavior of corroded bonded fully prestressed and conventional concrete beams. HBRC Journal, 14(4), 137–149. https://doi.org/10.1016/j.hbrcj.2016.02.002
  • Moawad, M., Mahmoud, A., El-karmoty, H., & El Zanaty, A. (2018). A. El zanaty, behavior of corroded bonded partially prestressed concrete beams. HBRC Journal, 14(1), 9–21. https://doi.org/10.1016/j.hbrcj.2016.01.003
  • Moradi, M., Khaleghi, M., Salimi, J., Farhangi, V., & Ramezanianpour, A. (2021). Predicting the compressive strength of concrete containing metakaolin with different properties using ann. Measurement, 183, 109790. https://doi.org/10.1016/j.measurement.2021.109790
  • Mozaffari, A. F. A., Emami, M., & Fathi, A. (2019). A comprehensive investigation into the performance, robustness, scalability and convergence of chaos-enhanced evolutionary algorithms with boundary constraints, Artif. Artificial Intelligence Review, 52(4), 2319–2380. https://doi.org/10.1007/s10462-018-9616-4
  • Murad, Y., Tarawneh, A., Arar, F., Al-Zu’bi, A., Al-Ghwairi, A., Al-Jaafreh, A., & Tarawneh, M. (2021). Flexural strength prediction for concrete beams reinforced with frp bars using gene expression programming. Structures, 33, 3163–3172. https://doi.org/10.1016/j.istruc.2021.06.045
  • Nasser, H., Vandewalle, L., & Verstrynge, E. (2022). Effect of pre-existing longitudinal and transverse corrosion cracks on the flexural behaviour of corroded rc beams. Construction and Building Materials, 319, 126141. https://doi.org/10.1016/j.conbuildmat.2021.126141
  • Nguyen, Q. H., Ly, H.-B., Nguyen, T.-A., Phan, V.-H., Nguyen, L. K., & Tran, V. Q. (2021). Investigation of ann architecture for predicting shear strength of fiber reinforcement bars concrete beams. PLOS ONE, 16(4), 1–22. https://doi.org/10.1371/journal.pone.0247391
  • Ofuyatan, O. M., Agbawhe, O. B., Omole, D. O., Igwegbe, C. A., & Ighalo, J. O. (4 (2022). Rsm and ann modelling of the mechanical properties of self- compacting concrete with silica fume and plastic waste as partial constituent replacement. Cleaner Materials, 100065. https://doi.org/10.1016/j.clema.2022.100065
  • Papãľ, T. M., & Melchers, R. E. (2011). The effects of corrosion on 45-year-old pre-stressed concrete bridge beams. Structure and Infrastructure Engineering, 7(1–2), 101–108. https://doi.org/10.1080/15732471003588411
  • Pedrosa, F., & Andrade, C. (2017). Corrosion induced cracking: Effect of different corrosion rates on crack width evolution. Construction and Building Materials, 133, 525–533. https://doi.org/10.1016/j.conbuildmat.2016.12.030
  • Rinaldi, Z., Imperatore, S., & Valente, C. (2010). Experimental evaluation of the flexural behavior of corroded p/c beams. Construction and Building Materials, 24(11), 2267–2278. https://doi.org/10.1016/j.conbuildmat.2010.04.029
  • Saraswathy, V., Lee, H. S., Karthick, S., & Kwon, S. J. (2017). Stress corrosion behavior of ungrouted pretensioned concrete beams. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/8585162
  • Vecchi, F., Franceschini, L., Tondolo, F., Belletti, B., Sãąnchez Montero, J., & Minetola, P. (2021). Corrosion morphology of prestressing steel strands in naturally corroded pc beams. Construction and Building Materials, 296, 123720. https://doi.org/10.1016/j.conbuildmat.2021.123720
  • Wang, L., Li, T., Dai, L., Chen, W., & Huang, K. (2020). Corrosion morphology and mechanical behavior of corroded prestressing strands. Journal of Advanced Concrete Technology, 18(10), 545–557. https://doi.org/10.3151/jact.18.545
  • Zeng, Y. H., Huang, Q. H., Gu, X. L., & Zhang, W. P. (2010). Experimental study on bending behavior of corroded post-tensioned concrete beams, 3521–3528. https://doi.org/10.1061/41096(366)336
  • Zhang, X., Wang, L., Zhang, J., & Liu, Y. (2017). Corrosion-induced flexural behavior degradation of locally ungrouted post-tensioned concrete beams. Construction and Building Materials, 134, 7–17. https://doi.org/10.1016/j.conbuildmat.2016.12.140
  • Zhang, X., Wang, L., Zhang, J., Ma, Y., & Liu, Y. (2017). Flexural behavior of bonded post-tensioned concrete beams under strand corrosion. Nuclear Engineering and Design, 313, 414–424. https://doi.org/10.1016/j.nucengdes.2017.01.004
  • Zhu, W., Franãğois, R., Poon, C. S., & Dai, J.-G. (2017). Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement. Construction and Building Materials, 148, 297–306. https://doi.org/10.1016/j.conbuildmat.2017.05.079