983
Views
1
CrossRef citations to date
0
Altmetric
BIOMEDICAL ENGINEERING

Clinical data-driven approach to identifying COVID-19 and influenza from a gradient-boosting model

ORCID Icon, & ORCID Icon
Article: 2188683 | Received 07 Dec 2022, Accepted 04 Mar 2023, Published online: 13 Mar 2023

References

  • Ahsan, M. M., Alam, T. E., Trafalis, T., & Huebner, P. (2020). Deep MLP-CNN model using mixed-data to distinguish between COVID-19 and Non-COVID-19 patients. Symmetry, 12(9), 1526. https://doi.org/10.3390/sym12091526
  • AlJame, M., Ahmad, I., Imtiaz, A., & Mohammed, A. (2020). Ensemble learning model for diagnosing COVID-19 from routine blood tests. Informatics in Medicine Unlocked, 21, 100449. https://doi.org/10.1016/j.imu.2020.100449
  • Alzubi, O. A., Alzubi, J. A., Alweshah, M., Qiqieh, I., Al-Shami, S., & Ramachandran, M. (2020). An optimal pruning algorithm of classifier ensembles: Dynamic programming approach. Neural Computing and Applications, 32(20), 16091–25. https://doi.org/10.1007/s00521-020-04761-6
  • Alzubi, J. A., Jain, R., Singh, A., Parwekar, P., & Gupta, M. (2021). COBERT: COVID-19 Question Answering System Using BERT. Arabian Journal for Science and Engineering, 1–11. https://doi.org/10.1007/s13369-021-05810-5
  • Bakhiet, M., & Taurin, S. (2021). SARS-CoV-2: Targeted managements and vaccine development. Cytokine & Growth Factor Reviews, 58, 16–29. https://doi.org/10.1016/j.cytogfr.2020.11.001
  • Banerjee, A., Ray, S., Vorselaars, B., Kitson, J., Mamalakis, M., Weeks, S., Baker, M., & Mackenzie, L. S. (2020). Use of machine learning and artificial intelligence to predict SARS-CoV-2 infection from full blood counts in a population. International Immunopharmacology, 86, 106705. https://doi.org/10.1016/j.intimp.2020.106705
  • Bao, F. S., Youbiao, H., Liu, J., Chen, Y., Qian, L., Zhang, C. R., Han, L., Zhu, B., Yaorong, G., Chen, S., Ming, X., & Ouyang, L. (2020). Triaging moderate COVID-19 and other viral pneumonias from routine blood tests. arXiv, 2005, 06546. https://doi.org/10.48550/arXiv.2005.06546
  • Basile, C., Combe, C., Pizzarelli, F., Covic, A., Davenport, A., Kanbay, M., Kirmizis, D., Schneditz, D., van der Sande, F., & Mitra, S. (2020). Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrology Dialysis Transplantation, 35(5), 737–741. https://doi.org/10.1093/ndt/gfaa069
  • Ben, H., Guo, H., Zhou, P., & Shi, Z.-L. (2021). Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19(3), 141–154. https://doi.org/10.1038/s41579-020-00459-7
  • Bilogur, A. (2018). Missingno: A missing data visualization suite. Journal of Open Source Software, 3(22), 547. https://doi.org/10.21105/joss.00547
  • Bradley, A. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159. https://doi.org/10.1016/S0031-3203(96)00142-2
  • Brinati, D., Campagner, A., Ferrari, D., Locatelli, M., Banfi, G., & Cabitza, F. (2020). Detection of COVID-19Infection from routine blood exams with machine learning: A feasibility study. Journal of Medical Systems, 44(8), 135. https://doi.org/10.1007/s10916-020-01597-4
  • Chadaga, K., Chakraborty, C., Prabhu, S., Umakanth, S., Bhat, V., & Sampathila, N. (2022). Clinical and laboratory approach to diagnose COVID-19 using machine learning. In Interdisciplinary sciences: Computational life sciences (Vol. 14, No.2, pp. 452–470). Springer.
  • Chadaga, K., Prabhu, S., Vivekananda, B. K., Niranjana, S., & Umakanth, S. (2021). Battling COVID-19 using machine learning: A review. Cogent Engineering, 9(1), 1958666.
  • Chen, T., Benesty, T. H., Khotilovich, V., & Tang, Y. (2015). Xgboost: Extreme gradient boosting. R Package Version 0.4-2, 1(4), 1–4.
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. s.n.
  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2002 1 August 2002). Applied multiple regression/correlation analysis for the behavioral sciences (3rd Edition). New York: Routledge. https://doi.org/10.4324/9780203774441
  • Colavita, F., Lapa, D., Carletti, F., Lalle, E., Bordi, L., Marsella, P., Nicastri, E., Bevilacqua, N., Giancola, M. L., Corpolongo, A., Ippolito, G., Capobianchi, M. R., & Castilletti, C. (2020). SARS-CoV-2 isolation from ocular secretions of a patient with COVID-19 in Italy with prolonged viral RNA detection. Annals of Internal Medicine, 173(3), 242–243. https://doi.org/10.7326/M20-1176
  • Coperchini, F., Chiovato, L., Croce, L., Magri, F., & Rotondi, M. (2020). The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews, 53, 25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003
  • Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodríguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & Growth Factor Reviews, 54, 62–75. https://doi.org/10.1016/j.cytogfr.2020.06.001
  • Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., & Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big Data, 8(1), 140. https://doi.org/10.1186/s40537-021-00516-9
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
  • Guolin, K., Meng, Q., Finley, T., Wang, T., Chen, W., Weidong, M., Qiwei, Y., & Liu, T.Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30.
  • Jafar, A., Bharathikannan, ALzubi, B., Tanwar, S., Manikandan, R., Khanna, A., & Thaventhiran, C. (2019). Boosted neural network ensemble classification for lung cancer disease diagnosis. Applied Soft Computing, 80, 579–591. https://doi.org/10.1016/j.asoc.2019.04.031
  • Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429–449. https://doi.org/10.3233/IDA-2002-6504
  • Jiang, Y., Tong, G., Yin, H., & Xiong, N. (2019). A Pedestrian Detection Method Based on Genetic Algorithm for Optimize XGBoost Training Parameters. IEEE Access, 7, 118310–118321. https://doi.org/10.1109/ACCESS.2019.2936454
  • Kouanou, A. T., Attia, T. M., Feudjio, C., Djeumo, A. F., Mouelas, A. N., Nzogang, M. P., & Christian. (2021). An overview of supervised machine learning methods and data analysis for COVID-19 detection. Journal of Healthcare Engineering, 2021. https://doi.org/10.1155/2021/4733167
  • Kukar, M., Gunčar, G., Vovko, T., Podnar, S., Černelč, P., Brvar, M., Zalaznik, M., Notar, M., Moškon, S., & Notar, M. (2021). COVID-19 diagnosis by routine blood tests using machine learning. Scientific Reports, 11(1), 10738.
  • Li, W. T., Jiayan, M., Shende, N., Castaneda, G., Chakladar, J., Tsai, J. C., Apostol, L., Honda, C. O., Xu, J., Wong, L. M., Zhang, T., Lee, A., Gnanasekar, A., Honda, T. K., Kuo, S. Z., Yu, M. A., Chang, E. Y., Rajasekaran, Ongkeko, Ongkeko, W. M. (2020). Using machine learning of clinical data to diagnose COVID-19: A systematic review and meta-analysis. BMC Medical Informatics and Decision Making, 20(1), 247. https://doi.org/10.1186/s12911-020-01266-z
  • Madhu, G., Lalith, B., Bharadwaj, G., Nagachandrika, & Vardhan, K. S. (2019). A novel algorithm for missing data imputation on machine learning. s.n.
  • Mei, X., Lee, H.-C., Diao, K.-Y., Huang, M., Lin, B., Liu, C., Xie, Z., Ma, Y., Robson, P. M., Chung, M., Bernheim, A., Mani, V., Calcagno, C., Li, K., Li, S., Shan, H., Lv, J., Zhao, T., Xia, J., … Yang, Y. (2020). Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature Medicine, 26(8), 1224–1228. https://doi.org/10.1038/s41591-020-0931-3
  • Movassagh, A. A. et al.(27 March 2021). Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. Journal of Ambient Intelligence and Humanized Computing, Volume, 2020. https://doi.org/10.1007/s12652-020-02623-6
  • Olagnier, D., & Mogensen, T. H. (2020). The covid-19 pandemic in Denmark: Big lessons from a small country. Cytokine & Growth Factor Reviews, 53, 10–12. https://doi.org/10.1016/j.cytogfr.2020.05.005
  • Pradhan, A., Prabhu, S., Chadaga, K., Sengupta, S., & Nath, G. (2022). Supervised Learning Models for the Preliminary Detection of COVID-19 in Patients Using Demographic and Epidemiological Parameters. Information, 13(7), 330.
  • Ren, X., Guo, H., Shenghong, L., Wang, S., & Jianhua, L. (2017). A novel image classification method with CNN-XGBoost model. s.n.
  • Schwab, P., Schütte, A. D., Dietz, B., & Bauer, S. (2020). Clinical predictive models for COVID-19: Systematic study. Journal of Medical Internet Research, 22(10), e21439. https://doi.org/10.2196/21439
  • ShahlaFaisal, Tutz, G., & Faisal, S. (2022). Nearest neighbor imputation for categorical data by weighting of attributes. Information Sciences, 592, 306–319. https://doi.org/10.1016/j.ins.2022.01.056
  • Shi, F., Xia, L., Shan, F., Song, B., Wu, D., Wei, Y., Yuan, H., Jiang, H., He, Y., Gao, Y., Sui, H., & Shen, D. (2021). Large-scale screening to distinguish between COVID-19 and community-acquired pneumonia using infection size-aware classification. Physics in Medicine & Biology, 66(6), 065031. https://doi.org/10.1088/1361-6560/abe838
  • Tchagna Kouanou, A., Mih Attia, T., Feudjio, C., Djeumo, A. F., Mouelas, A. N., Nzogang, M. P., Tchapga, C. T., Tchiotso, D., & Srinivas, S. (2021). An overview of supervised machine learning methods and data analysis for COVID-19 detection.Journal of Healthcare Engineering, 2021, 1–18. Issue Hindawi. https://doi.org/10.1155/2021/4733167
  • Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., & Xu, B. (2021). A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19). European Radiology, 31(8), 6096–6104. https://doi.org/10.1007/s00330-021-07715-1
  • Wang, D., Zhang, Y., & Zhao, Y. (2017). LightGBM: An effective miRNA classification method in breast cancer patients. s.n.
  • Zhen, H., Melton, G. B., Arsoniadis, E. G., Wang, Y., Kwaan, M. R., & Simon, G. J. (2017). Strategies for handling missing clinical data for automated surgical site infection detection from the electronic health record. Journal of Biomedical Informatics, 68, 112–120. https://doi.org/10.1016/j.jbi.2017.03.009
  • Zhong, J., Sun, Y., Peng, W., Xie, M., Yang, J., & Tang, X. (2018). XGBFEMF: An XGBoost-based framework for essential protein prediction. IEEE Transactions on NanoBioscience, 17(3), 243–250. https://doi.org/10.1109/TNB.2018.2842219
  • Zhou, X., Wang, Z., Li, S., Liu, T., Wang, X., Xia, J., & Zhao, Y. (2021). Machine learning-based decision model to distinguish between COVID-19 and Influenza: A retrospective, two-centered, diagnostic study. <![cdata[risk Management and Healthcare Policy]]>, 14, 595–604. https://doi.org/10.2147/RMHP.S291498