1,138
Views
1
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Experimental and numerical study of different metal contacts for perovskite solar cells

, , &
Article: 2189502 | Received 05 Jan 2023, Accepted 02 Mar 2023, Published online: 20 Mar 2023

References

  • Afzaal, M., & Karkain, S. (2022). Environmental Assessment of Perovskite Solar Cells. In The effects of dust and heat on photovoltaic modules: Impacts and solutions (pp. 279–11). Elsevier.
  • Aitola, K., Sonai, G. G., Markkanen, M., Kaschuk, J. J., Hou, X., Miettunen, K., & Lund, P. D. (2022). Encapsulation of commercial and emerging solar cells with focus on perovskite solar cells. Solar Energy, 237, 264–283. https://doi.org/10.1016/j.solener.2022.03.060
  • Bal, S. S., Basak, A., & Singh, U. P. (2022). Numerical modeling and performance analysis of Sb-based tandem solar cell structure using SCAPS–1D. Optical Materials, 127, 112282. https://doi.org/10.1016/j.optmat.2022.112282
  • Belarbi, M., Zeggai, O., & Louhibi-Fasla, S. (2022). Numerical study of methylammonium lead iodide perovskite solar cells using SCAPS-1D simulation program. Materials Today: Proceedings. Algeria.
  • Blossey, R. (2003). Self-cleaning surfaces—virtual realities. Nature Materials, 2(5), 301–306. https://doi.org/10.1038/nmat856
  • Chawki, N., Rouchdi, M., & Fares, B. (2022). Numerical study of BaZrS3 based Chalcogenide Perovskite solar cell using SCAPS-1D device simulation. Optical Materials, 126, 112250 .
  • Cheng, Y.T., & Rodak, D. E. (2005). Is the lotus leaf superhydrophobic? Applied Physics Letters, 86(14), 144101. https://doi.org/10.1063/1.1895487
  • Choi, H. K., Bae, S., Lee, S. K., Lee, S. H., Lee, K., Ko, S. Y., Kang, J. W., Yang, S. Y., & Kim, T. W. (2022). Tailoring the internal structure of porous copper film via size-controlled copper nanosheets for electromagnetic interference shielding. Materials Science and Engineering: B, 278, 115611. https://doi.org/10.1016/j.mseb.2022.115611
  • Chung, I., Lee, B., He, J., Chang, R. P. H., & Kanatzidis, M. G. (2012). All-solid-state dye-sensitized solar cells with high efficiency. Nature, 485(7399), 486–489. https://doi.org/10.1038/nature11067
  • Feng, X. J., & Jiang, L. (2006). Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 18(23), 3063–3078. https://doi.org/10.1002/adma.200501961
  • Fürstner, R., Barthlott, W., Neinhuis, C., & Walzel, P. (2005). Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir, 21(3), 956–961. https://doi.org/10.1021/la0401011
  • Ghosh, P., Sundaram, S., Nixon, T. P., & Krishnamurthy, S. (2021). Influence of nanostructures in Perovskite solar cells reference module in materials science and materials engineering. Elsevier.
  • Grätzel, M. (2014). The light and shade of perovskite solar cells. Nature Materials, 13(9), 838–842. https://doi.org/10.1038/nmat4065
  • Hossain, M. I., & Aïssa, B. (2017). Effect of structure, temperature, and metal work function on performance of organometallic perovskite solar cells. Journal of Electronic Materials, 46(3), 1806–1810. https://doi.org/10.1007/s11664-016-5232-8
  • Hossain, M. I., Aïssa, B., Samara, A., Mansour, S. A., Broussillou, C. A., & Bermudez Benito, V. (2021). Hydrophilic antireflection and antidust silica coatings. ACS Omega, 6(8), 5276–5286. https://doi.org/10.1021/acsomega.0c05405
  • Hossain, M. I., Alharbi, F. H., & Tabet, N. (2015). Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Solar Energy, 120, 370–380. https://doi.org/10.1016/j.solener.2015.07.040
  • Jebakumar, J., Moni, D. J., Gracia, D., & Shallet, M. D. (2022). Design and simulation of inorganic perovskite solar cell. Applied Nanoscience, 12(5), 1–12. https://doi.org/10.1007/s13204-021-02268-7
  • Jeyakumar, R., & Bag, A. (2022). Performance evaluation and optimization of CH3NH3PbBr3 based planar perovskite solar cells using various hole-transport layers. Solar Energy, 236, 832–840. https://doi.org/10.1016/j.solener.2022.03.048
  • Khattak, Y. H., Vega, E., Baig, F., & Soucase, B. M. (2022). Performance investigation of experimentally fabricated lead iodide perovskite solar cell via numerical analysis. Materials Research Bulletin, 151, 111802. https://doi.org/10.1016/j.materresbull.2022.111802
  • Kim, J., Kim, K. S., & Myung, C. W. (2020). Efficient electron extraction of SnO2 electron transport layer for lead halide perovskite solar cell. Npj Computational Materials, 6(1), 61 6 1–8. https://doi.org/10.1038/s41524-020-00370-y
  • Konstantakou, M., & Stergiopoulos, T. (2017). A critical review on tin halide perovskite solar cells. Journal of Materials Chemistry, 5(23), 11518–11549. https://doi.org/10.1039/C7TA00929A
  • Kumar, P. M., Das, A., Seban, L., & Nair, R. G. (2018). Chapter 8. Fabrication and life time of Perovskite solar cells.
  • Lafuma, A., & Quéré, D. (2003). Superhydrophobic states. Nature Materials, 2(7), 457–460. https://doi.org/10.1038/nmat924
  • Lin, L., Jiang, L., Li, P., Fan, B., & Qiu, Y. (2019). A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing. The Journal of Physics and Chemistry of Solids, 124, 205–211. https://doi.org/10.1016/j.jpcs.2018.09.024
  • Macis, S., Aramo, C., Bonavolontà, C., Cibin, G., D’elia, A., Davoli, I., Lucia, M. D., Lucci, M., Lupi, S., Miliucci, M., Notargiacomo, A., Ottaviani, C., Quaresima, C., Scarselli, M., Scifo, J., Valentino, M., Padova, P. D., & Marcelli, A. (2019). MoO3 films grown on polycrystalline Cu: Morphological, structural, and electronic properties. Journal of Vacuum Science & Technology, 37(2), 021513. https://doi.org/10.1116/1.5078794
  • Mahapatra, B., Krishna, R. V., Laxmi, & Patel, P. K. (2022). Design and optimization of CuSCN/CH3NH3PbI3/TiO2 perovskite solar cell for efficient performance. Optics Communications, 504, 127496. https://doi.org/10.1016/j.optcom.2021.127496
  • Mechtly E A 2002 Properties of materials reference data for engineers. Newnes.
  • Michaelson, H. B (1977). The work function of the elements and its periodicity related articles the work function of the elements and its periodicity addit. Journal of Applied Physics, 48(11), 191911. https://doi.org/10.1063/1.323539
  • Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., & Watanabe, T. (2000). Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 16(13), 5754–5760. https://doi.org/10.1021/la991660o
  • Moulaoui, L., Bajjou, O., Najim, A., Archi, M. and Rahmani, K., 2022, March. Numerical simulation of the NiO as hole transport layer in CH 3 NH 3 PbBr 3 perovskite based-solar cell using SCAPS-1D. In 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Morocco, (pp. 1–7). IEEE.
  • Nath, B., Ramamurthy, P. C., Hegde, G., & Roy Mahapatra, D. (2022). Role of electrodes on perovskite solar cells performance: A review. ISSS Journal of Micro and Smart Systems, 11(1), 1–19. https://doi.org/10.1007/s41683-021-00089-y
  • Nath, B., Ramamurthy, P. C., Mahapatra, D. R., & Hegde, G. (2022). Electrode transport layer–metal electrode interface morphology tailoring for enhancing the performance of Perovskite solar cells. ACS Applied Electronic Materials, 4(2), 689–697. https://doi.org/10.1021/acsaelm.1c01100
  • Nizamuddin, A., Arith, F., Rong, I. J., Zaimi, M., Rahimi, A. S., & Saat, S. (2021). Investigation of Copper(I)Thiocyanate (CuSCN) as a hole transporting layer for perovskite solar cells application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 78(2), 153–159. https://doi.org/10.37934/arfmts.78.2.153159
  • Qasim, I., Ahmad, O., Ul Abdin, Z., Rashid, A., Nasir, M. F., Malik, M. I., Rashid, M., & Hasnain, S. M. (2022). Design and numerical investigations of eco-friendly, non-toxic (Au/CuSCN/CH3NH3SnI3/CdTe/ZnO/ITO) perovskite solar cell and module. Solar Energy, 237, 52–61. https://doi.org/10.1016/j.solener.2022.02.056
  • Quasim Khan, M., & Ahmad, K. (2020). Origin and fundamentals of Perovskite solar cells. IntechOpen.
  • Raza, E., Ahmad, Z., Asif, M., Aziz, F., Riaz, K., Mehmood, M. Q., Bhadra, J., & Al-Thani, N. J. (2022). Numerical modeling and performance optimization of carbon-based hole transport layer free perovskite solar cells. Optical Materials, 125, 112075. https://doi.org/10.1016/j.optmat.2022.112075
  • Saeed, F., & Gelani, H. E. (2022). Unravelling the effect of defect density, grain boundary and gradient doping in an efficient lead-free formamidinium perovskite solar cell. Optical Materials, 124, 111952. https://doi.org/10.1016/j.optmat.2021.111952
  • Salem, M. S., Shaker, A., Zekry, A., Abouelatta, M., Alanazi, A., Alshammari, M. T., & Gontand, C. (2021). Analysis of hybrid hetero-homo junction lead-free perovskite solar cells by scaps simulator. Energies, 14(18), 5741. https://doi.org/10.3390/en14185741
  • Samantaray, M. R., Rana, N. K., Kumar, A., Ghosh, D. S., & Chander, N. (2022). Stability study of large‐area perovskite solar cells fabricated with copper as low‐cost metal contact. International Journal of Energy Research, 46(2), 1250–1262. https://doi.org/10.1002/er.7243
  • Shao, S., Liu, J., Portale, G., Fang, H. -H., Blake, G. R., Brink, G. H. T., Koster, L. J. A., & Loi, M. A. (2018). Highly reproducible Sn-Based Hybrid Perovskite solar cells with 9% efficiency. Advanced Energy Materials, 8(4), 1702019. https://doi.org/10.1002/aenm.201702019
  • Shiraishi, M., & Ata, M. (2001). Work function of carbon nanotubes Carbon. Carbon, 39(12), 1913–1917. https://doi.org/10.1016/S0008-6223(00)00322-5
  • Song, S. M., Park, J. K., Sul, O. J., & Cho, B. J. (2012). Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Letters, 12(8), 3887–3892. https://doi.org/10.1021/nl300266p
  • Sun, X., Lin, T., Ding, C., Guo, S., Ismail, I., Wang, Z., Wei, J., Luo, Q., Lin, J., Zhang, D., & Ma, C. Q. (2022). Fabrication of opaque aluminum electrode-based perovskite solar cells enabled by the interface optimization. Organic Electronics, 104, 106475. https://doi.org/10.1016/j.orgel.2022.106475
  • Wang, E., Chen, P., Yin, X., Gao, B., & Que, W. (2018). Boosting efficiency of planar heterojunction perovskite solar cells by a low temperature TiCl4 treatment. Journal of Advanced Dielectrics, 8(02), 1850009. https://doi.org/10.1142/S2010135X18500091
  • Wang, M., Liu, J., Ma, C., Wang, Y., Li, J., & Bian, J. (2022). Modular perovskite solar cells with Cs0. 05 (FA0. 85MA0. 15) 0.95 Pb (I0. 85br0. 15) 3 light-harvesting layer and graphene electrode. Journal of Electronic Materials, 51(5), 2381–2389. https://doi.org/10.1007/s11664-022-09509-7
  • Wu, J., Cha, H., Du, T., Dong, Y., Xu, W., Lin, C. T., & Durrant, J. R. (2022). A comparison of charge carrier dynamics in organic and perovskite solar cells. Advanced Materials, 34(2), 2101833. https://doi.org/10.1002/adma.202101833
  • Wu, Y., Sun, X., Dai, S., Li, M., Zheng, L., Wen, Q., Tang, B., Yun, D. Q., & Xiao, L. (2022). Broad-band-enhanced plasmonic perovskite solar cells with irregular silver nanomaterials. ACS Applied Materials & Interfaces, 14(14), 16269–16278. https://doi.org/10.1021/acsami.2c01759
  • Zhou, D., Zhou, T., Tian, Y., Zhu, X., & Tu, Y. (2018). perovskite-based solar cells: materials, methods, and future perspectives. Journal of Nanomaterials, 2018, 1–15. https://doi.org/10.1155/2018/8148072