735
Views
1
CrossRef citations to date
0
Altmetric
SYSTEMS & CONTROL ENGINEERING

Analyzing emergency evacuation scenarios in Ghana based on different groups profiles in a classroom

Article: 2191882 | Received 24 Oct 2022, Accepted 05 Mar 2023, Published online: 27 Mar 2023

References

  • Aik, L. E. (2011). Exit-selection behaviors during a classroom evacuation. Int J Phys Sci, 6(13), 3218–16.
  • Al, S. A. (2020). School auditorium evacuation simulation. International Journal of Information Technology and language Studies, 4, 27–43.
  • Bernardini, G., Lovreglio, R., & Quagliarini, E. (2019, March). Proposing behavior-oriented strategies for earthquake emergency evacuation: A behavioral data analysis from New Zealand, Italy and Japan Proposing behavior-oriented strategies for earthquake emergency evacuation: A behavioral data analysis from New Zea. Safety Science, 116, 295–309. https://doi.org/10.1016/j.ssci.2019.03.023
  • Bode, N. W. F., Holl, S., Mehner, W., Seyfried, A., & Xiao, G. (2015). Disentangling the Impact of social groups on response times and movement dynamics in evacuations. 10 (3),1–14. https://doi.org/10.1371/journal.pone.0121227
  • Campanella, M., Hoogendoorn, S. P., & Daamen, W. (2009). Effects of heterogeneity on self-organized pedestrian flows. Transportation Research Record, 2124(1), 148–156. https://doi.org/10.3141/2124-14
  • Crociani, L., & Lämmel, G. (2016). April Multi-destination pedestrian flows in equilibrium: a cellular automaton based approach. 31(6), 432–448. https://doi.org/10.1111/mice.12209
  • Duives, D. C., & Mahmassani, H. S. (2012). December Exit choice decisions during pedestrian evacuations of buildings. 2316(1), 84–94. https://doi.org/10.3141/2316-10
  • Fu, L., Luo, J., Deng, M., Kong, L., & Kuang, H. (2012). Simulation of evacuation processes in a large classroom using an improved cellular automaton model for pedestrian dynamics. Procedia Eng, 31(December 2012), 1066–1071. https://doi.org/10.1016/j.proeng.2012.01.1143
  • Helbing, D., Farkas, I., Molnar, P. Simulation of pedestrian crowds in normal and evacuation situations. Pedestr evacuation … [Internet]. 2002; Available from: http://tu-dresden.de/vkiwv/vwista/publications/evacuation.pdf
  • Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407(6803), 487–490. https://doi.org/10.1038/35035023
  • Hoogendoorn, S. P., & Bovy, P. H. L. (2004). Pedestrian route-choice and activity scheduling theory and models. 38 (2),169–190. https://doi.org/10.1016/S0191-2615(03)00007-9
  • Kholshevnikov, V. V., Samoshin, D. A., & Parfenenko, A. P. (2009). Pre-school and school children building evacuation. Proc Fourth Int Symp Hum Behav Fire, 243–254.
  • Kretz, T. (2009). Pedestrian traffic: On the quickest path. J Stat Mech Theory Exp, 2009(3), P03012. https://doi.org/10.1088/1742-5468/2009/03/P03012
  • LA, E., & Tc, W. (2012). Imulating evacuations with obstacles using a modified dynamic cellular automata model. J Appl Math June 2015, 2012, 1–17. https://doi.org/10.1155/2012/765270
  • Liu, S., Yang, L., Fang, T., & Li, J.2009.Evacuation from a classroom considering the occupant density around exits. Phys a stat Mech its Appl.388InternetAvailable from(9), ((1921–1928.https://doi.org/10.1016/j.physa.2009.01.008
  • Nagai, R., Fukamachi, M., & Tn, Ã. (2005). Experiment and simulation for counterflow of people going on all fours. 358 2–4,516–528. https://doi.org/10.1016/j.physa.2005.04.024
  • Nagai, R., Masahiro Fukamachi, T. N., & Nagatani, T. (2005). Experiment and simulation for counter flow of people going on all fours. Physica A, 358(2–4), 516–528.
  • Najmanová, H., & Ronchi, E. (2017). An experimental data-set on pre-school children evacuation. Fire Technology, 53(4), 1509–1533. https://doi.org/10.1007/s10694-016-0643-x
  • Nicolas, A., Hassan, F. H., & Nicolas, A. (2021). Transportmetrica a: transport science social groups in pedestrian crowds: Review of their influence on the dynamics and their modelling. 19(1). https://doi.org/10.1080/23249935.2021.1970651
  • Perozo, N., Garnier, S., Helbing, D., & Theraulaz, G. (2010). The walking behaviour of pedestrian social groups and its impact on crowd dynamics. journal.pone.org, 5(4), 1–7. https://doi.org/10.1371/journal.pone.0010047
  • Schadschneider, A., Christou, C., & Schadschneider, A. (2018). Diffusion with resetting inside a circle. Physical Review E, 97(6–1). https://doi.org/10.1103/PhysRevE.97.062106
  • SMÃ, L., Huang, H. C., Wang, P., & Yuen, K. K. (2006). A game theory based exit selection model for evacuation. 41 (5),364–369. https://doi.org/10.1016/j.firesaf.2006.02.003
  • Song, P., Gao, Y., Xue, Y., Jia, J., Luo, W., & Li, W. (2019). Human behavior modeling for evacuation from classroom using cellular automata. IEEE Access, 7, 98694–98701. https://doi.org/10.1109/ACCESS.2019.2930251
  • Song, W., Xu, X., Wang, B., & Ni, S. (2006). Simulation of evacuation processes using a multi-grid model for pedestrian dynamics. 363 (2),492–500. https://doi.org/10.1016/j.physa.2005.08.036
  • Tajima, Y., Takimoto, K., & Nagatani, T. (2001). Scaling of pedestrian channel ow with a bottleneck. 294 1–2,257–268. https://doi.org/10.1016/S0378-4371(01)00109-1
  • Thalmann, D., Musse, S. R., & Kallmann, M.(2000). Virtual humans ’ behaviour: individuals, groups, and crowds. 239–240.
  • Trivedi, A., Rao, S., & Member, S. (2018). March Agent-based modeling of emergency evacuations considering human panic behavior. 5(1), 277–288. https://doi.org/10.1109/TCSS.2017.2783332
  • Ulrich, A., Wagoum, K., Seyfried, A., & Holl, S. (2018). Modelling dynamic route choice of pedestrians to assess the criticality of building evacuation. https://doi.org/10.48550/arXiv.1103.4080
  • van der Wal Cn, Formolo, D., Robinson, M. A., Gwynne, S., & van der Wal, C. N. (2021). Examining evacuee response to emergency communications with agent-based simulations. Sustain, 13(9), 4623. https://doi.org/10.3390/su13094623
  • Vanumu, L. D., Arya, A., Gaddam, H. K., & Rao, K. R. 2018. Modelling emergency evacuation of classroom with different age profiles. 5, 374–381. https://doi.org/10.17815/CD.2020.96
  • Varas, A., Cornejo, M. D., Mainemer, D., Toledo, B., Rogan, J., Muñoz, V., & Valdivia, J. A. (2007). Cellular automaton model for evacuation process with obstacles. Phys A Stat Mech Its Appl, 382(2), 631–642. https://doi.org/10.1016/j.physa.2007.04.006
  • Wang, J., Majid, M. Y., Abdullah, S., Lin, P., & Ma, J. (2021). Simulation pedestrian flow under vertical bottleneck constraints: how stair configuration affects efficiency. Collective Dynamics, 10. https://doi.org/10.17815/CD.2021.126
  • Xie, K., Song, Y., Liu, J., Liang, B., & Liu, X. (2018). Stampede prevention design of primary school buildings in China: A sustainable built environment perspective. International Journal of Environmental Research and Public Health, 15(7), 1517. https://doi.org/10.3390/ijerph15071517
  • Xu, Y., Huang, H. J., & Yong, G. (2012). Modified static floor field and exit choice for pedestrian evacuation. Chinese Phys Lett, 29(8), 080502. https://doi.org/10.1088/0256-307X/29/8/080502
  • Yang, X., Wu, Z., & Li, Y. (2011). Difference between real-life escape panic and mimic exercises in simulated situation with implications to the statistical physics models of emergency evacuation: The 2008 Wenchuan earthquake. Phys A Stat Mech Its Appl, 390(12), 2375–2380. InternetAvailable from. https://doi.org/10.1016/j.physa.2010.10.019
  • Zhang, J., Li, H., Li, H., Hu, Y., Hu, Y., Song, W., & Song, W. (2020). Evacuation characteristics of preschool children through bottlenecks. Collect Dyn, 5, 253–261. https://doi.org/10.17815/CD.2020.58
  • Zhang, J., Song, W., & Xu, X. (2008). Experiment and multi-grid modeling of evacuation from a classroom. 387 (23),5901–5909. https://doi.org/10.1016/j.physa.2008.06.030
  • Zheng, R., Qiu, B., Deng, M. Y., Kong, L. J., & Liu, M. R. (2008). Cellular automaton simulation of evacuation process in story. Communications in Theoretical Physics, 49(1), 166–170. https://doi.org/10.1088/0253-6102/49/1/35