2,187
Views
1
CrossRef citations to date
0
Altmetric
PRODUCTION & MANUFACTURING

The socio-economic impact assessment of biofuels production in South Africa: A rapid structured review of literature

ORCID Icon, &
Article: 2192328 | Received 19 Nov 2022, Accepted 14 Mar 2023, Published online: 17 Apr 2023

References

  • Aghbashlo, M., Peng, W., Tabatabaei, M., Kalogirou, S. A., Soltanian, S., Hosseinzadeh-Bandbafha, H., Mahian, O., & Lam, S. S. (2021). Machine learning technology in biodiesel research: A review. Progress in Energy and Combustion Science, 85, 1–29. https://doi.org/10.1016/j.pecs.2021.100904
  • Amezcua-Allie, M. A., Martínez-Hernández, E., Anaya-Reza, O., Magdaleno-Molina, M., Malgarejo-Flores, L. A., Palmerín-Ruiz, M. E., Eguía-Lis, J. A. Z., Rosas-Moina, A., Enríquez-Ouy, M., & Arburto, J. (2019). Techno-economic analysis and life cycle assessment for energy generation from sugarcane bagasse: Case study for a sugar mill in Mexico. Food and Bioproducts Processing, 118, 281–292. https://doi.org/10.1016/j.fbp.2019.09.014
  • Anejionu, O. C. D., DiLucia, L., & Woods, J. (2020). Geospatial modelling of environmental and socio-economic impacts of large-scale production of advanced biofuel. Biomass & bioenergy, 142, 2–14. https://doi.org/10.1016/j.biombioe.2020.105789
  • Awogbemi, O., & Von Kallon, D. V. (2022). Application of tubular reactor technologies for the acceleration of biodiesel production. Bioengineering, 9(8), 1–37. https://doi.org/10.3390/bioengineering9080347
  • Beckstrom, B. D., Wilson, W. H., Crocker, M., & Quinn, J. C. (2020). Bioplastic feedstock production from microalgae with fuel co-products: A techno-economic and life cycle impact assessment. Algal Research, 46, 2–29. https://doi.org/10.1016/j.algal.2019.101769
  • Bertrand, E., Vandenberghe, L., Soccol, C., & Sigoillot, J. (2016). First generation bioethanol. Green Fuels Technology, Green Energy and Technology, 175–212. https://doi.org/10.1007/978-3-319-30205-8_8
  • Bloom, J. (2019). Socio-economic impact assessment for the proposed afro fishing expansion project in the port of Mossel Bay. Afro Fishing (Pty)Ltd.
  • Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J. P., Rolinsk, S., Biewald, A., Lotze-Campen, H., Weindll, I., Gerten, D., & Stevanovic, M. (2014). Trade-offs between land and water requirements for large-scale bioenergy production. GCB Bioenergy, 8(1), 11–24. https://doi.org/10.1111/gcbb.12226
  • Chandra, V. V., Hemstock, S. L., De Ramon, N. A., Surroop, D., & Surroop, D. (2017). Environmental and economic study for a prospective ethanol industry in Fiji. Progress in Industrial Ecology – an International Journal, 11(2), 146–162. https://doi.org/10.1504/PIE.2017.10009839
  • Conningarth Economist. (2013). Growing the sugar industry in South Africa: Investigation and evaluation of alternative uses and products from sugarcane: A cost benefit and macro-economic impact analysis. Conningarth Economists.
  • Coyle, W. (2007). The future of biofuels: A global perspective. Amber Waves (ERS Publication), 5(5), 24–29. https://doi.org/10.1037/h0095952
  • Demafelis, R. B., Movillon, J. L., Predo, C. D., Maligalig, D. S., Eleazar, P. J. M., & Tongko-Magadia, B. (2020). Socio-economic and environmental impacts of bioethanol production from sugarcane (Saccharum officinarum) and molasses in the Philippines. Journal of Environmental Science and Management, 23(1), 96–110. https://doi.org/10.47125/jesam/2020_1/10
  • Derose, K., DeMill, C., Davis, R. W., & Quinn, J. C. (2019). Integrated techno economic and life cycle assessment of the conversion of high productivity, low lipid algae to renewable fuels. Algal Research, 38, 1–48. https://doi.org/10.1016/j.algal.2019.101412
  • de Souza, N. R. D., Fracarolli, J. A., Janqueira, T. L., Chagas, M. F., Cardoso, T. F., Watanabe, M. D. B., Cavelett, O., Venzke, F. S. P., Dale, B. E., Bonomi, A., & Cortez, L. A. B. (2019). Sugarcane ethanol and beef cattle integration in Brazil. Biomass & bioenergy, 120, 448–457. https://doi.org/10.1016/j.biombioe.2018.12.012
  • DMRE. (2020). South African biofuels regulatory framework. Department of Mineral and Energy.
  • Dtic. (2021) . Recommendations to enhance investment support for the South Africa’s liquid Sector. Dtic, Pretoria, Republic of South Africa: Department of Trade, Industry and Competition.
  • English, B. C., Menard, R. J., & Wilson, B. (2022). The economic impact of a renewable biofuel/energy industry supply chain using the renewable energy economic analysis layers modelling system. Frontiers in Energy Research Doi 10:3389/fenrg.2022.780795, 10, 1–14. https://doi.org/10.3389/fenrg.2022.780795
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas G, G. (2008). Comparison of PubMed, scopus, web of science, and google scholar: Strength and weaknesses. The Federation of American Societies for Experimental Biology (FASEB) Journal, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF
  • Guo, M. (2020). The Global Scenario of Biofuel Production and Development. Green Energy and Technology. Springer. https://doi.org/10.1007/978-81-322-3965-9_3
  • IEA. 2018. Bioenergy. Annual report. International Energy Agency.
  • Kazemi, H., Panahi, S., Dehhaghi, M., Guillemin, G. J., Gupta, V. K., Lam, S. S., Aghbashlo, M., & Tabatabaei, M. (2022). Bioethanol production from food wastes rich in carbohydrates. Current Opinion in Food Science, 43, 71–81. https://doi.org/10.1016/j.cofs.2021.11.001
  • Kohler, M. 2016. An economic assessment of bioethanol production from sugarcane: The Case of South Africa. Cape town, Republic of South Africa: Economic Research South Africa (ERSA) working paper no:630.
  • Landa, T. F., Kalid, R., Rocha, L. B., Padula, A. D., & Zimmerman, W. B. (2022). Techno-economic modeling to produce biodiesel from marine microalgae in sub-Saharan countries: An exploratory study in Guinea-Bissau. Biomass & bioenergy, 158, 2–12. https://doi.org/10.1016/j.biombioe.2022.106369
  • Lee, R., & Lovole, J. M. (2013). From first to third generation biofuels: Challenges of producing a commodity from a biomass of increasing complexities. Animal Frontiers, 3(2), 6–11. https://doi.org/10.2527/af.2013-0010
  • Maphumulo, Sam 2021 Brazilian embassy and sugar industry partner to advance biofuels in South Africa. South African Sugar Journal Access 20 Jan 2022 https://www.sasugar.co.za/oct-dec-2021/brazilian%20embassy%20and%20andsugar%20industry%20partner%20to%20advance%20biofuels%20in%20%south%20africa
  • Martinkus, N., Latta, G., Rijkhoff, S. A. M., Mueller, D., Hoard, S., Sasatani, D., Pierobon, F., & Wolcott, M. (2019). A multi-criteria decision support tool for biorefinery siting: Using economic, environmental, and social metrics for a refined siting analysis. Biomass & bioenergy, 128, 1–20. https://doi.org/10.1016/j.biombioe.2019.105330
  • Mayer, F. D., Brondon, M., Hoffmann, R., Feris, L. A., Marcilio, N. R., & Baldo, V. (2016). Small-scale production of hydrous ethanol fuel: Economic and environmental assessment. Biomass & bioenergy, 93, 168–179. https://doi.org/10.1016/j.biombioe.2016.07.011
  • Moreno, P. M., Sproul, E., & Quinn, J. C. (2022). Economic and environmental sustainability assessment of guayule bagasse to fuel pathways. Industrial Crops and Products, 178, 114644. https://doi.org/10.1016/j.indcrop.2022.114644
  • MVRMA. (2007). Issues and Recommendations for Social and Economic Impact Assessment in the Mackenzie Valley. Mackenzie Valley Resources Management Act.
  • Ndokwana, A., & Fore, S. (2018). Economic assessment of bioethanol production from maize in South Africa. JEDT, 16(6), 973–994. https://doi.org/10.1108/JEDT-05-2017-0052
  • Nyarko, I., Nwaogu, C., Miroslav, H., & Paseu, P. O. (2021). Socio-economic analysis of wood charcoal production as a significant output of forest bioeconomy in Africa. Forests, 12(5), 1–17. https://doi.org/10.3390/f12050568
  • Onyeaka, H., Mansa, R. F., Wong, C. M. V. L., & Miri, T. (2022). Bioconversion of starch base food waste into Bioethanol. Sustainability, 14(18), 3–11. https://doi.org/10.3390/su141811401
  • Pachόn, E. R., Mandade, P., & Gnansounou, E. (2020). Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept. Bioresource Technology, 303(5), 1–33. https://doi.org/10.1016/j.biortech.2020.122946
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffman, T. C., Murlow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hrόbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Moyo-Wilson, E., McDonald, S. … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMC. https://doi.org/10.1186/s13643-021-01626-4
  • Pascheco-López, A., Lechtenberg, F., Somoza-Tornos, A., Graells, M., & Espuña, A. (2021). Economic and environmental assessment of plastic waste pyrolysis products and biofuels as substitutes for fossil-based fuels. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.676233
  • Pradhan, A., & Mbohwa, C. (2014). Development of biofuels in South Africa: Challenges and opportunities. Renewable and Sustainable Energy Reviews, 39, 1089–1100. https://doi.org/10.1016/j.rser.2014.07.131
  • Romo, C. (2019). Public perception of second generation biofuels. Accessed 10 July 2022 https://www.wpi.edu/academics/projects
  • Sajid, Z., da Silva, B., & Danial, S. N. (2021). Historical analysis of the role of governance systems in the sustainable development of biofuels in Brazil and the United States of America. Sustainability, 13(12), 1–24. https://doi.org/10.3390/su13126881
  • Schulze, J., Frank, K., Priess, J. A., & Meyer, M. A. (2016). Assessing regional-scale impacts of short rotation coppices on ecosystem services by modeling land-use decisions. Plos One, 11(4), 1–21. https://doi.org/10.1371/journal.pone.0153862
  • Seyffarth, A. R. (2016). The impact of rising ethanol production on the Brazilian market for basic food commodities: An econometric assessment. Environmental and Resource Economics, 64(3), 511–536. https://doi.org/10.1007/s10640-015-9881-5
  • Smith, J., Cheater, F., & Bekker, H. (2013). Parents’ experiences of living with a child with a long-term condition: A rapid structured review of the literature. Health Expectations, 18(4), 452–474. https://doi.org/10.1111/hex.12040
  • Stafford, W. H. L., Lotter, G. A., von Maltitz, G. P., & Brent, A. C. (2019). Biofuels technology development in Southern Africa. Development Southern Africa, 36(2), 155–174. https://doi.org/10.1080/0376835X.2018.1481732
  • Statista, 2022 Biofuel industry in the U.S.-Statistics and facts Accessed 10 Januuary 2023 https://statista.com
  • Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Penahi, H. K. S., Mollahosseini, A., Hosseini, M., & Soufiyan, M. M. (2019). Reactor technologies for biodiesel production and processing: A review. Progress in Energy and Combustion Science, 74, 240–303. https://doi.org/10.1016/j.pecs.2019.06.001
  • Teter, J., Yeh, S., Khanna, M., Berndes, G., & Du, C. (2018). Water impacts of U.S. biofuels: Insights from an assessment combining economic and biophysical models. Plos One, 13(9), 1–22. (9. https://doi.org/10.1371/journal.pone.0204298
  • Thurlow, J., Branca, G., Felix, E., Maltsoglou, I., & Rincón, L. A. (2016). Producing biofuels in low-income countries: An integrated environmental and economic assessment for Tanzania. Environ Resource Econ, 64(2), 153–171. https://doi.org/10.1007/s10640-014-9863-z
  • Tian, Z., Ji, Y., Xu, H., Qiu, H., Sun, L., Zhong, H., & Liu, J. (2021). The potential contribution of growing rapeseed in winter fallow fields across Yangtze River Basin to energy and food security in China. Resources, Conservation & Recycling, 164, 1–10. https://doi.org/10.1016/j.resconrec.2020.105159
  • Tsuma, M. C., & Monde, N. (2012). A socio-economic impact assessment of a project to identify and implement best management practices at the Zanyokwe irrigation scheme at farm level. WaterSa, 38(5), 783–792. https://doi.org/10.4314/wsa.v38i5.18
  • van der Hilst, F., Verstegen, J. A., Woltjer, G., Smeets, E. M. W., & Faaiji, A. P. C. (2018). Mapping land use changes resulting from biofuel production and the effect of mitigation measures. GCB Bioenergy, 10(11), 804–824. https://doi.org/10.1111/gcbb.1253
  • Verategen, J. A., van der Hilst, F., Wolter, G., Karssenberg, D., de Jong, S. M., & Faaij, A. P. C. (2016). What can and can’t we say about indirect land-use change in Brazil using an integrated economic – land-use change model? GCB Bioenergy, 8(3), 561–578. https://doi.org/10.1111/gcbb.12270
  • Vis, M., Dörnbrack, A. S., & Haye, S. (2014). Socio-economic impact assessment tools. Springer. https://doi.org/10.1007/978-3-319-03829-2_1
  • Xiao, Y., & Watson, M. (2019). Guidance on conducting a systematic literature review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X1772397
  • Xing, Y., Zheng, Z., Sun, Y., Alikhani, A., & Baghban, A. (2021). A review on machine learning application in biodiesel production studies. International Journal of Chemical Engineering, 2021, 2–12. https://doi.org/10.1155/2021/2154258
  • Yang, X., Liu, Y., Bezema, A., & Thrän, D. (2022). Two birds with one stone: A combined environmental and economic performance assessment of rapeseed-based biodiesel production. GCB Bioenergy, 14(1), 215–241. https://doi.org/10.1111/gcbb.12913