2,438
Views
3
CrossRef citations to date
0
Altmetric
ENVIRONMENTAL ENGINEERING

Assessing the impacts of land use/land cover changes on hydrological processes in Southern Ethiopia: The SWAT model approach

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2199508 | Received 11 Dec 2022, Accepted 01 Apr 2023, Published online: 04 May 2023

References

  • Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., & Srinivasan, R. (2007). Spatially distributed modelling of hydrology and water quality in the pre-alpine/alpine thur watershed using SWAT. Journal of Hydrology, 333(2–4), 413–15. https://doi.org/10.1016/j.jhydrol.2006.09.014
  • Adugna, A. (2014). Demography and health. livelihood profiles regional overview. S. N. N. P. R. Available from: https://www.ethdemographyandhealth.org
  • Akale, A. T., Dagnew, D. C., Belete, M. A., Tilahun, S. A., Tammo, W. M., & Steenhuis, T. S. (2017). Impact of soil depth and topography on the effectiveness of conservation practices on discharge and soil loss in the Ethiopian highlands. Land, 6(4), 1–17. https://doi.org/10.3390/land6040078
  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development 1. Journal of the American Water Resources Association / AWRA, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  • Belihu, M., Tekleab, C., Abate, B., & Bewket, W. (2020). Hydrologic response to land use land cover change in the upper GidaboWatershed, rift valley lakes basin, Ethiopia. HydroResearch, 3, 85–94. https://doi.org/10.1016/j.hydres.2020.07.001
  • Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Meshesha, D. T., Adgo, E., Tsubo, M., Masunaga, T., Fenta, A. A., Sultan, D., Yibeltal, M., & Ebabu, K. (2019). Hydrological responses to land use/land cover change and climate variability in contrasting agro-ecological environments of the upper blue nile basin, Ethiopia. The Science of the Total Environment, 689, 347–365. https://doi.org/10.1016/j.scitotenv.2019.06.338
  • Brito, D., Neves, R., Branco, M. A., Prazeres, A., Rodrigues, S., Gonçalves, M. C., & Ramos, T. B. (2019). Assessing water and nutrient long-term dynamics and loads in the enxoé temporary river basin (Southeast Portugal). Water, 11(354), 1–21. https://doi.org/10.3390/w11020354
  • Chhabra, A., Geist, H., Houghton, R. A., Haberl, H., Braimoh, A. K., Vlek, P., Lambin, E. F., & Geist, H. J. (2006). Multiple impacts of land use/cover change. In Land-use and land-cover change: Local processes and global impacts (pp. 71–116). Springer. https://doi.org/10.1007/3-540-32202-7_4
  • Chimdessa, K., Quraishi, S., Kebede, A., & Alamirew, T. (2018). Effect of land use land cover and climate change on river flow and soil loss in didessa river basin, south west blue nile, Ethiopia. Hydrology, 6, 1–20. https://doi.org/10.3390/hydrology6010002
  • CSA. (2013). Central statistical agency. population projection of Ethiopia for all regions at wereda level from 2014-2017. Addis Ababa.
  • Du, X., Li, X., Zhang, W., & Wang, H. (2014). Variations in source apportionments of nutrient load among seasons and hydrological years in a semi-arid watershed: GWLF model results. Environmental Science and Pollution Research, 21(10), 6506–6515. https://doi.org/10.1007/s11356-014-2519-2
  • Elias, E., Seifu, W., Tesfaye, B., Girmay, W., & Tejada Moral, M. (2019). Impact of land use/cover changes on lake ecosystem of Ethiopia central rift valley. Cogent Food and Agriculture, 5(1), 1–20. https://doi.org/10.1080/23311932.2019.1595876
  • Emam, R. A., Kappas, M., Linh, K. H. N., & Renchin, T. (2017). Hydrological modeling and runoff mitigation in an ungauged basin of central Vietnam using SWAT model. Hydrology, 4(1), 1–17. https://doi.org/10.3390/hydrology4010016
  • FAO. (2002). Food and agricultural organization. major soils of the world land and water digital MediaSeries; CD- ROM. Food and Agricultural Organization of the United Nations. http://www.fao.org/geonetwork/srv/en/metadata.show?id-14116
  • FAO. (2020). Global forest assessment resources 2020 (No.163). Forestry Paper.
  • Fetahi, T. (2019). Eutrophication of Ethiopian water bodies: A serious threat to water quality, biodiversity and public health. African Journal of Aquatic Science, 44(4), 303–312. https://doi.org/10.2989/16085914.2019.1663722
  • Garedew, E., Sanderwall, M., Sanderberg, U., & Campbell, B. M. (2009). Land-use and land-cover dynamics in the central rift valley of Ethiopia. Environmental management, 44(4), 683–694. https://doi.org/10.1007/s00267-009-9355-z
  • Gashaw, T., Tulu, T., & Argaw, M. (2017). Evaluation and prediction of land use/land cover changes in the andassa watershed, blue nile basin, Ethiopia. Environmental Systems Research, 6(1), 1–15. https://doi.org/10.1186/s40068-016-0078-x
  • Gebrehiwot, S. G., Ellison, D., Bewket, W., Seleshi, Y., Inogwabini, B. -I., & Bishop, K. (2019). The Nile Basin waters and the West African rainforest: Rethinking the boundaries. WIREs Water, 6(1), e1317. https://doi.org/10.1002/wat2.1317
  • Godebo, M. M., Ulsido, M. D., Jijo, T. E., & Geleto, G. M. (2018). Influence of land use and land cover changes on ecosystem services in the BilateAlabasub-watershed, Southern Ethiopia. Journal of Ecology and the Natural Environment, 10(9), 228–238. https://doi.org/10.5897/JENE2018.0709
  • Griensven, A. V., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., & Srinivasan, R. (2006). A global sensitivity analysis tool for the parameters of multi-variable watershed models. Journal of Hydrology, 324(1–4), 10–23. https://doi.org/10.1016/j.jhydrol.2005.09.008
  • Hornberger, G. M., & Spear, R. C. (1981). An approach to the preliminary-analysis of environmental systems. Journal of Environmental Management, 12, 7–18. https://www.osti.gov/biblio/6396608
  • Ibrahim, F., Osikabor, B., Olatunji, B. T., & Olatunji, T. (2022). Understanding forest land conversion for agriculture in a developing country context: An application of the theory of planned behaviour among a cohort of Nigerian farmers. Folia Forestalia Polonica, Series A, 64(3), 117–130. https://doi.org/10.2478/ffp-2022-0012
  • Kidane, M., Bezie, A., Kesete, N., & Tolessa, T. (2019). The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia. Heliyon, 5(12), 1–14. https://doi.org/10.1016/jheliyon.2019.e02981
  • Koch, F., Griensven, A. V., Uhlenbrook, S., Tekleab, S., & Teferi, E. (2012). The effects of land use change on hydrological responses in the choke mountain range (Ethiopia)- A new approach adressing land use dynamics in the model SWAT.International environmental modelling and software society. In R. Seppelt, A. A. Voinov, S. Kange, & D. BankampEds., Sith bienal meeting pp. 1–9. Available from https://www.researchgate.net/publication/306100649.
  • Krysanova, V., Hattermann, F., Huang, S., Hesse, C., Vetter, T., Liersch, S., Koch, H., & Kundzewicz, Z. W. (2015). Modelling climate and land use change impacts with SWIM: Lessons learnt from multiple applications. Hydrological Sciences Journal, 60(4), 606–635. https://doi.org/10.1080/02626667.2014.925560
  • Kuma, H. G., Feyessa, F. F., & Demissie, T. A. (2021). Hydrologic responses to climate and land-use/land-cover changes in the bilate catchment, Southern Ethiopia. Journal of Water and Climate Change, 12(8), 1–20. https://doi.org/10.2166/wcc.2021.281
  • Legesse, D., Vallet-Coulomb, C., & Gasse, F. (2003). Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. Journal of Hydrology, 275(1–2), 67–85. https://doi.org/10.1016/S0022-1694(03)00019-2
  • Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H. -G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9–10), 645–654. https://doi.org/10.1016/S1474-7065(02)00049-9
  • Li, Y., Chang, J., Luo, L., Wang, Y., Guo, A., Ma, F., & Fan, J. (2019). Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters.Hydrology research. Hydrology Research, 5(1), 244–261. https://doi.org/10.2166/nh.2018.006
  • Li, H., Li, Y., Huang, G., & Sun, J. (2021). Probabilistic assessment of crop yield loss to drought time-scales in Xinjiang, China. International Journal of Climatoogyl, 41, 4077–4094. https://doi.org/10.1002/joc.7059
  • Luo, P., Takara, K., Apip, H. B., Nover, D., & Nover, D. (2014). Paleoflood simulation in the Kamo River basin by using a grid-cell distributed rainfall runoff model. Journal of Flood Risk Management, 7(2), 182–192. https://doi.org/10.1111/jfr3.12038
  • Ma, L., Ascough, J. C., II, Ahuja, L. R., Shaffer, M. J., Hanson, J. D., & Rojas, K. W. (2000). Root zone water quality model sensitivity analysis using monte carlo simulation. Transactions of the ASAE, 43(4), 883–895. https://doi.org/10.13031/2013.2984
  • Mariye, M., Jianhua, L. L., & Maryo, M. (2022). Land use land cover change analysis and detection of its drivers using geospatial techniques: A case of south-central Ethiopia. All Earth, 34(1), 309–332. https://doi.org/10.1080/27669645.2022.2139023
  • Matlhodi, B., Kenabatho, P. K., Parida, B. P., & Maphanyane, J. G. (2019). Evaluating land use and land cover change in the Gaborone dam catchment, Botswana, from 1984 – 2015 using GIS and remote sensing. Sustainability, 11(19), 5174. https://doi.org/10.3390/su11195174
  • Mesene, M. (2017). Extent and impacts of land degradation and rehabilitation strategies. https://creativecommons.org/by-nc/3.0
  • Mussa, M., Hashim, H., & Teha, M. (2016). Range land degradation: Extent, impacts and alternative restoration techniques in the Rangelands of Ethiopia. https://creativecommons/licenses/by/4.0
  • Nash, J. E., & Sutcliffe, J. W. (1970). River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Negasa, D. J. (2020). Effects of land use types on selected soil properties in central highlands of Ethiopia. Applied and Environmental Soil Science, 2020, 1–9. https://doi.org/10.1155/2020/7026929
  • Neitsch, S. L., Arnold, J. R., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. AgriLife Research and Extension Texas Water Resources Institute, Technical Report, 406. https://hdl.handle.net/1969.1/128050
  • Nugroho, P., Marsono, D., Sudira, P., & Suryatmojo, H. (2013). Impact of land-use changes on water balance. Procedia environmental sciences, 17, 256–262. https://doi.org/10.1016/j.proenv.2013.02.036
  • Rientjes, T. H. M., Haile, A. T., Kebede, E., Mannaerts, C. M. M., Habib, E., & Steenhuis, T. S. (2011). Changes in land cover, rainfall and stream flow in upper gilgel abbay catchment, blue nile basin – Ethiopia. Hydrology and Earth System Sciences, 15(6), 1979–1989. https://doi.org/10.5194/hess-15-1979-2011
  • Saddique, N., Mahmood, T., & Bernhofer, C. (2020). Quantifying the impacts of land use/land cover change on the water balance in the afforested river basin, Pakistan. Environmental Earth Sciences, 79(19), 1–13. https://doi.org/10.1007/s12665-020-09206-w
  • Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37(5), 1169–1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  • Setegn, S. G., Srinivasan, R., & Dargahi, B. (2008). Hydrological modelling in the Lake Tana basin, Ethiopia Using SWAT Model. The Open Hydrology Journal, 2(1), 49–62. https://doi.org/10.2174/1874378100802010049
  • Seyam, M. M. H., Haque, M. R., & Rahman, M. M. (2022). Identifying the land use land cover (LULC) changes using remote sensing and GIS approach: A case study at Bhaluka in Mymensingh, Bangladesh. Case Studies in Chemical and Environmental Engineering, 7, 100293. 7, June2022. https://doi.org/10.1016/j.cscee.2022.100293.
  • Shawul, A. A., Alamirew, T., & Dinka, M. O. (2013). Calibration and validation of SWAT model and estimation of water balance components of shaya mountainous watershed, Southeastern Ethiopia. In Hydrology and earth system sciences discuss (Vol. 10, pp. 13955–13978). Hydrol Earth Syst Sci; H. https://doi.org/10.5194/hessd-10-13955-2013
  • Talebizadeh, M., Morid, S., Ayyoubzadeh, S. A., & Ghasemzadeh, M. (2009). Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management, 2(9), 1747–1761. https://link.springer.com/article/10.1007/s11269-009-9522-2
  • Tena, T. M., Mwaanga, P., & Nguvulu, A. (2019). Impact of land use/land cover change on hydrological components in chongwe river catchment. Sustainability, 11(22), 1–13. https://doi.org/10.3390/su11226415
  • WoldeYohannes, A., Cotter, M., Kelboro, G., & Dessalegn, W. Land use and land cover changes and their effects on the landscape of abaya-chamo basin, Southern Ethiopia. (2018). Land, 7(1), 1–17. ponding author https://doi.org/10.3390/land010002
  • Yasarer, L. M. W., Bingner, R. L., Garbrecht, J. D., Locke, M. A., Lizotte, R. E., Jr., Momm, H. G., & Busteed, P. R. (2017). Climate Change Impacts on Runoff, Sediment, and Nutrient Loads in an Agricultural Watershedin the Lower Mississippi River Basin. Applied Engineering in Agriculture, 33(3), 379–392. https://doi.org/10.13031/aea.12047