3,718
Views
3
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Mechanical Characteristics of Sugarcane Bagasse Fibre Reinforced Polymer Composites: A Review

, , , & ORCID Icon
Article: 2200903 | Received 10 Mar 2023, Accepted 05 Apr 2023, Published online: 18 May 2023

References

  • AB, A. M. M., Liyana, J., Norazian, M. N., Kamarudin, H., & Ruzaidi, C. M. (2013). Mechanical properties of polymer composites with sugarcane bagasse filler. Advanced Materials Research, 740, 739–22. https://doi.org/10.4028/www.scientific.net/AMR.740.739
  • Ali, H. T., Alghtani, A. H., Felemban, B. F., Abd El-Aziz, K., Saber, D., Ahmed, E. M., Megahed, M., & Fotouhi, M. (2021). Multivariable analysis for selection of natural fibers as fillers for a sustainable food packaging industry. Materials Research Express, 8(9), 095504. https://doi.org/10.1088/2053-1591/ac17a9
  • Alokika, A., Kumar, A., Kumar, A., Kumar, V., & Singh, B. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, 564–582. https://doi.org/10.1016/j.ijbiomac.2020.12.175
  • Balaji, A., Karthikeyan, B., Swaminathan, J., & Sundar Raj, C. (2018). Thermal behavior of cardanol resin reinforced 20 mm long untreated bagasse fiber composites. International Journal of Polymer Analysis and Characterization, 23(1), 70–77. https://doi.org/10.1080/1023666X.2017.1387448
  • Bin Bakri, M. K., Rahman, M. R., & Matin, M. M. (2022). Cellulose reinforcement in thermoset composites. In Fundamentals and Recent Advances in Nanocomposites Based on Polymers and Nanocellulose (pp. 127–142). Elsevier. https://doi.org/10.1016/B978-0-323-85771-0.00011-7
  • Boparai K, S., & Kumar, A. (2021). Thermosetting polymer composites. Encyclopedia of Materials: Plastics and Polymers, 1, 584–587. https://doi.org/10.1016/B978-0-12-820352-1.00102-4
  • Brabazon, D. (2021). Introduction: Polymer Matrix Composite Materials. In Encyclopedia of Materials: Composites (pp. 563–564). Elsevier. https://doi.org/10.1016/B978-0-12-819724-0.00109-9
  • Cao, Y., Shibata, S., & Fukumoto, I. (2006). Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites Part A Applied Science and Manufacturing, 37(3), 423–429. https://doi.org/10.1016/j.compositesa.2005.05.045
  • Carvalho Neto AGV, D., Ganzerli, T. A., Cardozo, A. L., Fávaro, S. L., Pereira, A. G. B., Girotto, E. M., & Radovanovic, E. (2014). Development of composites based on recycled polyethylene/sugarcane bagasse fibers. Polymer Composites, 35(4), 768–774. https://doi.org/10.1002/pc.22720
  • Cerqueira, E. F., CARP, B., & Mulinari, D. R. (2011). Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Engineering, 10, 2046–2051. https://doi.org/10.1016/j.proeng.2011.04.339
  • Chandramohan, D. (2014). Studies on natural fiber particle reinforced composite material for conservation of natural resources. Advances in Applied Science Research, 5(2), 305–315.
  • Chen, M. J., Li, R. M., Zhang, X. Q., Feng, J., Feng, J., Liu, C. -F., & Shi, Q. -S. (2017). Homogeneous transesterification of sugar cane bagasse toward sustainable plastics. ACS Sustainable Chemistry & Engineering, 5(1), 360–366. https://doi.org/10.1021/acssuschemeng.6b01735
  • Da Silva, C. G., & Frollini, E. (2020). Unburned sugarcane bagasse: bio-based phenolic thermoset composites as an alternative for the management of this agrowaste. Journal of Polymers and the Environment, 28(12), 3201–3210. https://doi.org/10.1007/s10924-020-01848-y
  • Devadiga, D. G., Bhat, K. S., Mahesha, G., & Sánchez, J. (2020). Sugarcane bagasse fiber reinforced composites: Recent advances and applications. Cogent Engineering, 7(1), 1823159. https://doi.org/10.1080/23311916.2020.1823159
  • Díaz-Ramírez, G., Maradei, F., & Vargas-Linares, G. (2019). Bagasse sugarcane fibers as reinforcement agents for natural composites: Description and polymer composite applications. Revista UIS Ingenierías, 18(4), 117–130. https://doi.org/10.18273/revuin.v18n4-2019011
  • Dinesh, S., Kumaran, P., Mohanamurugan, S., Vijay, R., Singaravelu, D. L., Vinod, A., Sanjay, M. R., Siengchin, S., & Bhat, K. S. (2020). Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. Journal of Polymer Research, 27(1), 9. https://doi.org/10.1007/s10965-019-1975-2
  • El-Fattah, A. A., el Demerdash, A. G. M., Alim Sadik, W. A., & Bedir, A. (2015). The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene. Journal of Composite Materials, 49(26), 3251–3262. https://doi.org/10.1177/0021998314561484
  • Elmeniawy, M., Mansour, A., Hamdy, A., & Saber, D. (2021). Mechanical properties and corrosion behavior of sugarcane Bagasse fiber reinforced low density polyethylene composites. The Egyptian International Journal of Engineering Sciences and Technology, 36(2), 63–71. https://doi.org/10.21608/eijest.2021.80884.1072
  • Huang, Z., Wang, N., Zhang, Y., Hu, H., & Luo, Y. (2012). Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Composites Part A Applied Science and Manufacturing, 43(1), 114–120. https://doi.org/10.1016/j.compositesa.2011.09.025
  • Ilczyszyn, F., Cherouat, A., & Montay, G. (2014). Effect of hemp fibre morphology on the mechanical properties of vegetal fibre composite material. Advanced Materials Research, 875-877, 485–489. https://doi.org/10.4028/www.scientific.net/AMR.875-877.485
  • Islam, S., Islam, S., & Hasan, M. (2022). Natural fiber reinforced polymer composites as sustainable green composites. In Encyclopedia of Materials: Plastics and Polymers (pp. 987–996). Elsevier. https://doi.org/10.1016/B978-0-12-820352-1.00257-1
  • John, M. J., & Anandjiwala, R. D. (2008). Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites, 29(2), 187–207. https://doi.org/10.1002/pc.20461
  • Kokta, B. V., Maldas, D., Daneault, C., & Béland, P. (1990). Composites of poly(vinyl chloride) and wood fibers. Part II: Effect of chemical treatment. Polymer Composites, 11(2), 84–89. https://doi.org/10.1002/pc.750110203
  • Kumar Acharya, S., Mishra, P., & Kumar Mehar, S. (2011). Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. Bioresources, 6, 3155–3165. https://doi.org/10.15376/biores.6.3.3155-3165
  • Kumar, S., Manna, A., & Dang, R. (2022). A review on applications of natural Fiber-Reinforced composites (NFRCs). Materials Today: Proceedings, 50, 1632–1636. https://doi.org/10.1016/j.matpr.2021.09.131
  • Kumar Saw, S., & Datta, C. (2009). Thermomechanical properties of jute/bagasse hybrid fibre reinforced epoxy thermoset composites. Bioresources, 4, 1455–1476. https://doi.org/10.15376/BIORES.4.4.1455-1475
  • Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010
  • Lee, S. C., & Mariatti, M. (2008). The effect of bagasse fibers obtained (from rind and pith component) on the properties of unsaturated polyester composites. Materials Letters, 62(15), 2253–2256. https://doi.org/10.1016/j.matlet.2007.11.097
  • Lila, M. K., Komal, U. K., & Singh, I. (2021). Thermal post-processing of bagasse fiber reinforced polypropylene composites. Composites Communications, 23, 100546. https://doi.org/10.1016/j.coco.2020.100546
  • Lodha, P., & Netravali, A. N. (2005). Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced ‘green’ composites. Composites Science and Technology, 65(7–8), 1211–1225. https://doi.org/10.1016/j.compscitech.2004.12.036
  • Luz, S. M., Gonçalves, A. R., & Del’arco, A. P. (2007). Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Composites Part A Applied Science and Manufacturing, 38(6), 1455–1461. https://doi.org/10.1016/j.compositesa.2007.01.014
  • Mehanny, S., Farag, M., Rashad, R. M., Elsayed, H. (2012) Fabrication and characterization of starch based bagasse fiber composite. In: International Conference of Mechanical Engineering (IMECHE2012). ASME, Texas, USA
  • Mishra, P., & Acharya, S. K. (2010). Anisotropy abrasive wear behavior of bagasse fiber reinforced polymer composite. International Journal of Engineering Science and Technology, 2(11), 104–112. https://doi.org/10.4314/ijest.v2i11.64558
  • Mishra, S., & Naik, J. B. (2005). Effect of treatment of maleic anhydride on mechanical properties of natural fiber: Polystyrene composites. Polymer-Plastics Technology and Engineering, 44(4), 663–675. https://doi.org/10.1081/PTE-200057814
  • Mishra, S., & Patil, Y. P. (2003). Compatibilizing effect of different anhydrides on cane bagasse pith and melamine–formaldehyde-resin composites. Journal of Applied Polymer Science, 88(7), 1768–1774. https://doi.org/10.1002/app.12207
  • Motaung, T. E., & Anandjiwala, R. D. (2015). Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Industrial Crops and Products, 74, 472–477. https://doi.org/10.1016/j.indcrop.2015.05.062
  • Motaung, T. E., Linganiso, L. Z., John, M., & Anandjiwala, R. D. (2015). The effect of silane treated sugar cane bagasse on mechanical, thermal and crystallization studies of recycled polypropylene. Materials Sciences and Applications, 06(08), 724–733. https://doi.org/10.4236/msa.2015.68074
  • Motaung, T., Mochane, M., Makhetha, T., Motloung, S., Mokhothu, T., Mokhena, T., & Moji, R. (2017). Effect of mechanical treatment on morphology and thermal and mechanical properties of sugar cane bagasse–low-density polyethylene composites. Polymer Composites, 38(8), 1497–1503. https://doi.org/10.1002/pc.23717
  • Motsoeneng, T. S., Magagula, S., & Mohapi, M.et al.(2021). Elastomer matrix based natural fiber composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives, and Applications. Elsevierpp. 167–185. https://doi.org/10.1016/B978-0-12-821090-1.00013-2.
  • Moubarik, A., Grimi, N., & Boussetta, N. (2013). Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene. Composites Part B: Engineering, 52, 233–238. https://doi.org/10.1016/j.compositesb.2013.04.040
  • Mulinari, D. R., Voorwald, H. J. C., Cioffi, M. O. H., DASILVA, M., DACRUZ, T., & SARON, C. (2009). Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Composites Science and Technology, 69(2), 214–219. https://doi.org/10.1016/J.COMPSCITECH.2008.10.006
  • Mulinari, D. R., Voorwald, H. J. C., Cioffi, M. O. H., da Silva, M. L. C. P., & Luz, S. M. (2009). Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydrate Polymers, 75(2), 317–321. https://doi.org/10.1016/j.carbpol.2008.07.028
  • Nampitch, T., Wiphanurat, C., Kaisone, T., & Hanthanon, P. (2016). Mechanical and Morphological Properties of Poly(Lactic Acid)/Bagasse Fiber Composite Foams. Applied Mechanics and Materials, 851, 31–36. https://doi.org/10.4028/www.scientific.net/amm.851.31
  • O’Donnell, A., Dweib, M. A., & Wool, R. P. (2004). Natural fiber composites with plant oil-based resin. Composites Science and Technology, 64(9), 1135–1145. https://doi.org/10.1016/j.compscitech.2003.09.024
  • Onésippe, C., Passe-Coutrin, N., Toro, F., Delvasto, S., Bilba, K., & Arsène, M. -A. (2010). Sugarcane bagasse fibres reinforced cement composites: Thermal considerations. Composites Part A Applied Science and Manufacturing, 41(4), 549–556. https://doi.org/10.1016/j.compositesa.2010.01.002
  • Osarenmwinda, J. O., & Abode, S. I. (2010). Potential of Carbonized Bagasse Filler in Rubber Products. Journal of Emerging Trends in Engineering and Applied Sciences, 1, 2141–7016. https://hdl.handle.net/10520/EJC136062
  • Panthapulakkal, S., Raghunanan, L., & Sain, M. et al. (2017). Natural fiber and hybrid fiber thermoplastic composites: Advancements in lightweighting applications. Green Composites: Waste and Nature-based Materials for a Sustainable Future. Second. Elsevier Incpp. 39–72. https://doi.org/10.1016/B978-0-08-100783-9.00003-4.
  • Panwar, V., & Pal, K. (2022). Recent Developments of Thermosetting Polymers for Advanced Composites. Encyclopedia of Materials: Plastics and Polymers, 2, 1047–1056. https://doi.org/10.1016/B978-0-12-820352-1.00268-6
  • Parameswaran, B., Raveendran, S., & Pandey, A. (2021). Introduction to biodegradable polymers and composites: Process engineering to commercialization. Biomass, Biofuels, Biochemicals, 3–10. https://doi.org/10.1016/B978-0-12-821888-4.00014-9
  • Patil, R., & Kalagi, G. (2015). The mechanical properties of natural fibre reinforced polymer composites: A Review. International Journal of Engineering Research & Technology, 3, 17. https://doi.org/10.17577/IJERTCONV3IS17059
  • Pervaiz, M., Panthapulakkal, S., KC, B., Sain, M., & Tjong, J. (2016). Emerging trends in automotive lightweighting through novel composite materials. Materials Sciences and Applications, 07(01), 26–38. https://doi.org/10.4236/msa.2016.71004
  • Potiron, C. O., Passe-Coutrin, N., & Toro, F., et al. (2010). Sugarcane bagasse fibres reinforced cement composites: Thermal considerations. Composites Part A Applied Science and Manufacturing, 41, 549–556. https://doi.org/10.1016/j.compositesa.2010.01.002
  • Prabhu, R., Ganesh, S., Mahesha, G., Bhat, K. S., & Sánchez, J. (2022). Physicochemical characteristics of chemically treated bagasse fibers. Cogent Engineering, 9(1), 2014025. https://doi.org/10.1080/23311916.2021.2014025
  • Ramlee, N. A., Jawaid, M., Zainudin, E. S., & Yamani, S. A. K. (2019). Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8(4), 3466–3474. https://doi.org/10.1016/j.jmrt.2019.06.016
  • Saber, D., & Abdelnaby, A. H. (2022). Recent developments in natural fiber as reinforcement in polymeric composites: A Review. Asian Journal of Applied Science and Technology, 06(03), 56–75. https://doi.org/10.38177/ajast.2022.6308
  • Saber, D., Abdelnaby, A. H., & Abdelhaleim, A. M. (2023). Fabrication of ecofriendly composites using low-density polyethylene and sugarcane bagasse: Characteristics’ degradation. Textile Research Journal, 004051752311612. https://doi.org/10.1177/00405175231161281
  • Saber, D., & El-Aziz K, A. (2022). Advanced materials used in wearable health care devices and medical textiles in the battle against coronavirus (COVID-19): A review. Journal of Industrial Textiles, 51(1_suppl), 246S–271S. https://doi.org/10.1177/15280837211041771
  • Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18, 351–363. doi:https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351:AID-ADV6>3.0.CO;2-X
  • Sanjay, M. R., Arpitha, G. R., Naik, L. L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of Natural Fibers and Its Composites: An Overview. Natural Resources, 07(03), 108–114. https://doi.org/10.4236/nr.2016.73011
  • Shibata, S., Cao, Y., & Fukumoto, I. (2005). Effect of bagasse fiber on the flexural properties of biodegradable composites. Polymer Composites, 26(5), 689–694. https://doi.org/10.1002/pc.20140
  • Singh, A. A., Afrin, S., & Karim, Z. (2017). Green Composites: Versatile Material for Future. In M. Jawaid, M. Salit, & O. Alothman (Eds.), Green Biocomposites. Green Energy and Technology. Springer. https://doi.org/10.1007/978-3-319-49382-4_2
  • Teixeira, R. S., Tonoli, G. H. D., Santos, S. F., Fiorelli, J., Savastano, H., & Lahr, F. A. R. (2012). Extruded cement based composites reinforced with sugar cane bagasse fibres. Key Engineering Materials, 517, 450–457. https://doi.org/10.4028/www.scientific.net/KEM.517.450
  • Tewari, M., Singh, V. K., Gope, P. C., & Chaudhary, A. K. (2012). Evaluation of mechanical properties of bagasse-glass fiber reinforced composite Composite. J Mater Environ Sci, 3, 171–184.
  • Tezara, C., Siregar, J. P., & Lim, H. Y., et al. (2016). Factors that affect the mechanical properties of kenaf fiber reinforced polymer: A review. Journal of Mechanical Engineering and Sciences, 10, 2159–2175. https://doi.org/10.15282/jmes.10.2.2016.19.0203
  • Thakur, V. K., & Thakur, M. K. (2014). Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117. https://doi.org/10.1016/J.CARBPOL.2014.03.039
  • Thomas, S., Joseph, K., Malhotra, S. K., Goda, K., & Sreekala, M. S. (Eds.). (2012). Polymer composites, macro-and microcomposites (Vol. 1). John Wiley & Sons. https://doi.org/10.1002/9783527674220
  • Trindade, W. G., Hoareau, W., & Megiatto, J. D., et al. (2005). Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites. Biomacromolecules, 6, 2485–2496. https://doi.org/10.1021/bm058006
  • Vázquez, A., Domínguez, V. A., & Kenny, J. M. (1999). Bagasse fiber-polypropylene based composites. Journal of Thermoplastic Composite Materials, 12(6), 477–497. https://doi.org/10.1177/089270579901200604
  • Vidyashri, V., Lewis, H., Narayanasamy, P., Mahesha, G. T., & Bhat, K. S. (2019). Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterization. Cogent Engineering, 6(1), 1708644. https://doi.org/10.1080/23311916.2019.1708644
  • Vilay, V., Mariatti, M., Mat Taib, R., & Todo, M. (2008). Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Composites Science and Technology, 68(3–4), 631–638. https://doi.org/10.1016/j.compscitech.2007.10.005
  • Xu, Y., Wu, Q., Lei, Y., & Yao, F. (2010). Creep behavior of bagasse fiber reinforced polymer composites. Bioresource Technology, 101(9), 3280–3286. https://doi.org/10.1016/j.biortech.2009.12.072
  • Yashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., Yogesha, B., & Pham, D. (2018). Duc Pham (Reviewing Editor) (2018) Polymer matrix-natural fiber composites: An overview. Cogent Engineering, 5(1), 1. https://doi.org/10.1080/23311916.2018.1446667
  • Zakaria, M. S., Musa, L., Nordin, R. M., & Halim, K. A. A. (2020). Sugarcane Bagasse Reinforced Polyester Composites: Effects of Fiber Surface Treatment and Fiber Loading on the Tensile and Flexural Properties. IOP Conference Series: Materials Science and Engineering, 957(1), 012032. https://doi.org/10.1088/1757-899X/957/1/012032
  • Zheng, Y. T., Cao, D. R., Wang, D. S., & Chen, J. J. (2007). Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC. Composites Part A Applied Science and Manufacturing, 38(1), 20–25. https://doi.org/10.1016/j.compositesa.2006.01.023