1,544
Views
6
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

A multicriteria decision-making approach for prioritizing renewable energy resources for sustainable electricity generation in Benin

& ORCID Icon
Article: 2204553 | Received 11 Jan 2023, Accepted 14 Apr 2023, Published online: 23 Apr 2023

References

  • Abdul, D., Wenqi, J., & Tanveer, A. (2022). Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology. Renewable Energy, 184, 1018–24. https://doi.org/10.1016/j.renene.2021.10.082
  • Afrane, S., Ampah, J. D., Yusuf, A. A., Mensah, E. A., Oti, J. B., Asante, D., Dankwa, D. A., Engineering, A., Resources, N., & Carli, G. (2021). Prioritizing renewable energy sources for electrification in Ghana: A decision support framework using fuzzy theory. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3941689
  • Aghdam, F. H., Mudiyanselage, M. W., Mohammadi-Ivatloo, B., & Marzband, M. (2023). Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management. Applied Energy, 333, 120569. November 2022. https://doi.org/10.1016/j.apenergy.2022.120569
  • Ahmad, F., Ashraf, I., Iqbal, A., Marzband, M., & Khan, I. (2022). A novel AI approach for optimal deployment of EV fast charging station and reliability analysis with solar based DGs in distribution network. Energy Reports, 8, 11646–11660. https://doi.org/10.1016/j.egyr.2022.09.058
  • Ahmadi, S. E., Marzband, M., Ikpehai, A., & Abusorrah, A. (2022). Optimal stochastic scheduling of plug-in electric vehicles as mobile energy storage systems for resilience enhancement of multi-agent multi-energy networked microgrids. Journal of Energy Storage, 55(PB), 105566. https://doi.org/10.1016/j.est.2022.105566
  • Al Garni, H. Z., Awasthi, A., & Ramli, M. A. M. (2018). Optimal design and analysis of grid-connected photovoltaic under different tracking systems using HOMER. Energy Conversion and Management, 155, 42–57. July 2017. https://doi.org/10.1016/j.enconman.2017.10.090
  • Ali, F., Srisuwan, C., Techato, K., & Bennui, A. (2022). Assessment of small hydropower in Songkhla Lake Basin, Thailand using GIS-MCDM. Sustainable Water Resources Management, 9(1), 25. https://doi.org/10.1007/s40899-022-00788-w
  • Ali, T., Ma, H., & Nahian, A. J. (2019). An analysis of the renewable energy technology selection in the southern region of Bangladesh using a hybrid multi-criteria decision making (MCDM) method. International Journal of Renewable Energy Research, 9(4), 1838–1848.
  • Amini, M., Chang, S., & Malmir, B. (2020). A fuzzy MADM method for uncertain attributes using ranking distribution. Proceedings of the 2016 Industrial and Systems Engineering Research Conference, ISERC 2016, May, 759–764.
  • Amoozad Mahdiraji, H., Arzaghi, S., Stauskis, G., & Zavadskas, E. K. (2018). A hybrid fuzzy BWM-COPRAS method for analyzing key factors of sustainable architecture. Sustainability, 10(5), 1626. https://doi.org/10.3390/su10051626
  • Anyango, A. (2022). Benin inaugurates first large-scale solar photovoltaic power plant. https://pumps-africa.com/benin-inaugurates-first-large-scale-solar-photovoltaic-power-plant/
  • Asadabadi, M. R., Chang, E., & Saberi, M. (2019). Are MCDM methods useful? A critical review of Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP). Cogent Engineering, 6(1). https://doi.org/10.1080/23311916.2019.1623153
  • Asakereh, A., Soleymani, M., & Safieddin Ardebili, S. M. (2022). Multi-criteria evaluation of renewable energy technologies for electricity generation: A case study in Khuzestan province, Iran. Sustainable Energy Technologies and Assessments, 52, 52. https://doi.org/10.1016/j.seta.2022.102220
  • Büyüközkan, G., & Güleryüz, S. (2016). An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey $. International Journal of Production Economics, 182, 435–448. https://doi.org/10.1016/j.ijpe.2016.09.015
  • Çelikbilek, Y., & Tüysüz, F. (2016). An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources. Energy, 115, 1246–1258. https://doi.org/10.1016/j.energy.2016.09.091
  • Center for Sustainable Systems, U. of M. (2022). Photovoltaic Energy Factsheet.: Vol. Pub. No. C.
  • Chodha, V., Dubey, R., Kumar, R., Singh, S., & Kaur, S. (2022). Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Materials Today: Proceedings, 50, 709–715. https://doi.org/10.1016/j.matpr.2021.04.487
  • Diakoulaki, G., Mavrotas, D., & Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: The critic method. Computers & Operations Research, 22(7), 763–770. https://doi.org/10.1016/0305-0548(94)00059-H
  • Dwivedi, A., Goel, V., Kumar Pathak, S., & Kumar, A. (2023). Prioritization of potential barriers to the implementation of solar drying techniques using MCDM tools: A case study and mapping in INDIA. Solar Energy, 253, 199–218. https://doi.org/10.1016/j.solener.2023.02.030
  • Ertay, T., Kahraman, C., & Kaya, I. (2013). Evaluation of renewable energy alternatives using MACBETH and fuzzy AHP multicriteria methods: The case of Turkey. Technological and Economic Development of Economy, 19(1), 38–62. https://doi.org/10.3846/20294913.2012.762950
  • Eslami, S., Noorollahi, Y., Marzband, M., & Anvari-Moghaddam, A. (2022). District heating planning with focus on solar energy and heat pump using GIS and the supervised learning method: Case study of Gaziantep, Turkey. Energy Conversion and Management, 269(May), 116131. https://doi.org/10.1016/j.enconman.2022.116131
  • Garni, H., Kassem, A., Awasthi, A., Komljenovic, D., & Al-Haddad, K. (2016). A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustainable Energy Technologies and Assessments, 16, 137–150. https://doi.org/10.1016/j.seta.2016.05.006
  • Georgiou, D., Mohammed, E. S., & Rozakis, S. (2015). Multi-criteria decision making on the energy supply configuration of autonomous desalination units. Renewable Energy, 75, 459–467. https://doi.org/10.1016/j.renene.2014.09.036
  • Golmohamadi, H. (2022). Demand-side management in industrial sector: A review of heavy industries. Renewable and Sustainable Energy Reviews, 156, 111963. https://doi.org/10.1016/j.rser.2021.111963
  • Gülçin, B., & Sezin, G. (2017). Evaluation of renewable energy resources in turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations. https://doi.org/10.1016/j.energy.2017.01.137
  • Güney, T. (2019). Renewable energy, non-renewable energy and sustainable development. International Journal of Sustainable Development and World Ecology, 26(5), 389–397. https://doi.org/10.1080/13504509.2019.1595214
  • Harjanne, A., & Korhonen, J. M. (2019). Abandoning the concept of renewable energy. Energy Policy, 127, 330–340. September 2018. https://doi.org/10.1016/j.enpol.2018.12.029
  • Hosseini, S. E. (2022). Transition away from fossil fuels toward renewables: Lessons from Russia-Ukraine crisis. Future Energy, 1(1), 2–5. https://doi.org/10.55670/fpll.fuen.1.1.8
  • IEA. (2019). World energy outlook 2017. International Energy Agency, 290.
  • IEA. (2021). Global energy review, assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021. Global Energy Review. https://doi.org/10.1787/90c8c125-en.
  • IEA, I. U. W. B. W. (2021). Tracking SDG7: The energy progress report. License: creative commons attribution—NonCommercial 3.0 IGO (CC BY- NC 3.0 IGO). World Bank.
  • IRENA. (2018). Planification et perspectives pour les énergies renouvelables: Afrique de l’Ouest 2018.
  • IRENA. (2022). Renewable power generation costs in 2021. International Renewable Energy Agency. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf
  • IRENA, D. B., Zusammenarbeit, D., & Für, G. (2021). The renewable energy transition in Africa powering access, resilience and prosperity on behalf of the.
  • Javadi, M. S., Gough, M., Mansouri, S. A., Ahmarinejad, A., Nematbakhsh, E., Santos, S. F., & Catalão, J. P. S. (2022). A two-stage joint operation and planning model for sizing and siting of electrical energy storage devices considering demand response programs. International Journal of Electrical Power & Energy Systems, 138, 107912. https://doi.org/10.1016/j.ijepes.2021.107912
  • Kabak, M., & Daǧdeviren, M. (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management, 79, 25–33. https://doi.org/10.1016/j.enconman.2013.11.036
  • Kaya, İ., Çolak, M., & Terzi, F. (2019). A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strategy Reviews, 24, 207–228. https://doi.org/10.1016/j.esr.2019.03.003
  • Lee, H. C., & Chang, C. T. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews, 92(May), 883–896. https://doi.org/10.1016/j.rser.2018.05.007
  • Manirambona, E., Talai, S. M., & Kimutai, S. K. (2022). Sustainability evaluation of power generation technologies using multi-criteria decision making: The Kenyan case. Energy Reports, 8, 14901–14914. https://doi.org/10.1016/j.egyr.2022.11.055
  • Mansouri, S. A., Rezaee Jordehi, A., Marzband, M., Tostado-Véliz, M., Jurado, F., & Aguado, J. A. (2023). An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster. Applied Energy, 333, 120560. November 2022. https://doi.org/10.1016/j.apenergy.2022.120560
  • MENSAH, J. H. R., dos Santos, I. F. S., & Tiago Filho, G. L. (2022). A Critical analysis of the energy situation in the Benin Republic and its evolution in last decade. SSRN Electronic Journal, 55(35). https://doi.org/10.2139/ssrn.4074515
  • Moafi, M., Ardeshiri, R. R., Mudiyanselage, M. W., Marzband, M., Abusorrah, A., Rawa, M., & Guerrero, J. M. (2023). Optimal coalition formation and maximum profit allocation for distributed energy resources in smart grids based on cooperative game theory. International Journal of Electrical Power & Energy Systems, 144, 108492. July 2022. https://doi.org/10.1016/j.ijepes.2022.108492
  • Naicker, P., & Thopil, G. A. (2019). A framework for sustainable utility scale renewable energy selection in South Africa. Journal of Cleaner Production, 224, 637–650. https://doi.org/10.1016/j.jclepro.2019.03.257
  • Odoi-Yorke, F., Abbey, A. A., Atepor, L., & Sarkodie, W. O. (2022). A Decision Support System for Evaluating Cooking Fuels for Sustainable Development in Ghana BT - Sustainable Education and Development – Making Cities and Human Settlements Inclusive, Safe, Resilient, and Sustainable J. N. Mojekwu, W. Thwala, C. Aigbavboa, E. Bamfo-Agyei, L. Atepor, & R. A. Oppong, (Eds.). Springer International Publishing. https://doi.org/10.1007/978-3-030-90973-4_38
  • Odoi-Yorke, F., Abofra, N., & Kemausuor, F. (2022). Decision-making approach for evaluating suitable hybrid renewable energy system for SMEs in Ghana. International Journal of Ambient Energy, 43(1), 1–45. https://doi.org/10.1080/01430750.2022.2068068
  • Odoi-Yorke, F., Atepor, L., & Abbey, A. A. (2022). A multicriteria decision making approach for evaluating crop residues for sustainable briquette production in Ghana. In J. N. Mojekwu, W. Thwala, C. Aigbavboa, E. Bamfo-Agyei, L. Atepor, & R. A. Oppong (Eds.), Sustainable education and development – making cities and human settlements inclusive, safe, resilient, and sustainable (pp. 193–205). Springer International Publishing. https://doi.org/10.1007/978-3-030-90973-4_16
  • Odoi-Yorke, F., Frimpong, A. T., Ampimah, C. B., & Atepor, L. (2023). Techno-economic assessment of a utility-scale wind power plant in Ghana. Energy Conversion and Management, X, 100375. https://doi.org/10.1016/j.ecmx.2023.100375
  • Odoi-Yorke, F., John, J., & Atepor, L. (2022). Composite decision-making algorithms for optimisation of hybrid renewable energy systems: Port of Takoradi as a case study. Energy Reports, 8(November), 2131–2150. https://doi.org/10.1016/j.egyr.2022.01.118
  • Odou, O. D. T., Bhandari, R., & Adamou, R. (2020). Hybrid off-grid renewable power system for sustainable rural electrification in Benin. Renewable Energy, 145, 1266–1279. https://doi.org/10.1016/j.renene.2019.06.032
  • Owusu, P. A., Asumadu-Sarkodie, S., & Dubey, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990
  • Pathak, S. K., Sharma, V., & Chougule, S. S. (2022). Prioritization of renewable energy Alternatives by Using Analytic Hierarchy Process (AHP) model: A case study of India. Lecture Notes in Mechanical Engineering, 103–118. https://doi.org/10.1007/978-981-16-7059-6_10
  • Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning - a review. Renewable and Sustainable Energy Reviews, 8(4), 365–381. https://doi.org/10.1016/j.rser.2003.12.007
  • Qazi, A., Bhowmik, C., Hussain, F., Yang, S., Naseem, U., Adebayo, A. -A., Gumaei, A., & Al-Rakhami, M. (2023). Analyzing the public opinion as a guide for renewable-energy status in Malaysia: A case study. IEEE Transactions on Engineering Management, 70(2), 371–385. https://doi.org/10.1109/TEM.2020.3046749
  • Raheja, S., Obaidat, M. S., Kumar, M., Sadoun, B., & Bhushan, S. (2022). A hybrid MCDM framework and simulation analysis for the assessment of worst polluted cities. Simulation Modelling Practice and Theory, 118, 102540. https://doi.org/10.1016/j.simpat.2022.102540
  • Razeghi, M., Hajinezhad, A., Naseri, A., Noorollahi, Y., & Moosavian, S. F. (2023). An overview of renewable energy technologies for the simultaneous production of high-performance power and heat. Future Energy, 2(2), 1–11. https://doi.org/10.55670/fpll.fuen.2.2.1
  • Saberi-Beglar, K., Zare, K., Seyedi, H., Marzband, M., & Nojavan, S. (2023). Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads. Applied Energy, 329, 120265. November 2022. https://doi.org/10.1016/j.apenergy.2022.120265
  • San Cristóbal, J. R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renewable Energy, 36(2), 498–502. https://doi.org/10.1016/j.renene.2010.07.031
  • SEforALL. (2022). Benin SEforALL focal point. https://www.se4all-africa.org/seforall-in-africa/country-data/benin/
  • Şengül, Ü., Eren, M., Eslamian Shiraz, S., Gezder, V., & Sengül, A. B. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy, 75, 617–625. https://doi.org/10.1016/j.renene.2014.10.045
  • Sotiman Yotto, H. C., Chetangny, P. K., Aredjodoun, J., Houndedako, S., Chamagne, D., Barbier, G., & Vianou, A. (2021). The renewable energy landscape in Benin: An analysis and review of barriers, targets, policies and actions for a clean energy transition. International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2021, October, 7–8. https://doi.org/10.1109/ICECCME52200.2021.9590886
  • Streimikiene, D., Balezentis, T., & Krisciukaitien, I. (2020). Prioritizing sustainable electricity production technologies: MCDM approach. Renewable and Sustainable Energy Reviews, 16(5), 3302–3311. https://doi.org/10.1016/j.rser.2012.02.067
  • Stritzke, S., Leach, M., Leary, J., Rousseau, N., Batchelor, S., Brömling, G., Fehrenbach, S., Tchenga, V. G. E., & Andres, M. M. (2022). Benin eCooking Market Assessment (Issue February). https://mecs.org.uk/wp-content/uploads/2022/02/MECS-EnDev-Benin-eCooking-Market-Assessment-presentation.pdf
  • Tasri, A., & Susilawati, A. (2014). Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustainable Energy Technologies and Assessments, 7, 34–44. https://doi.org/10.1016/j.seta.2014.02.008
  • Torkayesh, S. E., Amiri, A., Iranizad, A., & Torkayesh, A. E. (2020). Entropy based edas decision making model for neighborhood selection: A case study in Istanbul. Journal of Industrial Engineering and Decision Making, 1(1), 1–11. https://doi.org/10.31181/jiedm200101001t
  • Troldborg, M., Heslop, S., & Hough, R. L. (2014). Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties. Renewable and Sustainable Energy Reviews, 39, 1173–1184. https://doi.org/10.1016/j.rser.2014.07.160
  • United States Environmental Protection Agency. (2013). Renewable energy fact sheet: Wind turbines. United States Environmental Protection Agency. August.
  • Van Thanh, N. (2022). Sustainable energy source selection for industrial complex in Vietnam: A Fuzzy MCDM Approach. IEEE Access, 10, 50692–50701. https://doi.org/10.1109/ACCESS.2022.3173609
  • Yazdani, M., Torkayesh, A. E., Santibanez-Gonzalez, E. D., & Otaghsara, S. K. (2020). Evaluation of renewable energy resources using integrated Shannon Entropy—EDAS model. Sustainable Operations and Computers, 1(December), 35–42. https://doi.org/10.1016/j.susoc.2020.12.002