592
Views
0
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Experimental analysis of hardness and tensile characteristics of copper reinforced AA6061 stir cast composites subjected to thermal and deformation assisted heat treatments

, ORCID Icon &
Article: 2205003 | Received 07 Mar 2023, Accepted 17 Apr 2023, Published online: 23 Apr 2023

References

  • Ahn, H. K., & Yu, C. H. (2001). Effect of SiC volume fraction on the age-hardening behavior in SiC particulate-reinforced 6061 aluminum alloy composites. Metals and Materials International, 7(1), 1–13. https://doi.org/10.1007/bf03026930
  • Alaneme, K. K., Fajemisin, A. V., & Maledi, N. B. (2019). Development of aluminium-based composites reinforced with steel and graphite particles: Structural, mechanical and wear characterization. Journal of Materials Research and Technology, 8(1), 670–682. https://doi.org/10.1016/j.jmrt.2018.04.019
  • Alaneme, K. K., Okotete, E. A., Fajemisin, A. V., & Bodunrin, M. O. (2019). Applicability of metallic reinforcements for mechanical performance enhancement in metal matrix composites: A review. Arab Journal of Basic and Applied Sciences, 26(1), 311–330. https://doi.org/10.1080/25765299.2019.1628689
  • Amirkhanlou, S., Rezaei, M. R., Niroumand, B., & Toroghinejad, M. R. (2011). High-strength and highly-uniform composites produced by compocasting and cold rolling processes. Materials & Design, 32(4), 2085–2090. https://doi.org/10.1016/j.matdes.2010.11.046
  • Arslan, G., & Kalemtas, A. (2009). Processing of silicon carbide–boron carbide–aluminium composites. Journal of the European Ceramic Society, 29(3), 473–480. https://doi.org/10.1016/j.jeurceramsoc.2008.06.007
  • Avner, S. H. (2012). Introduction to Physical Metallurgy (Second ed.). Tata McGraw Hill.
  • Awate, P. P., & Barve, S. B. (2022). Enhanced microstructure and mechanical properties of Al6061 alloy via graphene nanoplates reinforcement fabricated by stir casting. Functional Composites and Structures, 4(1), 015005. https://doi.org/10.1088/2631-6331/ac586d
  • Bhoi, N. K., Singh, H., & Pratap, S. (2020). Developments in the aluminum metal matrix composites reinforced by micro/nano particles – a review. Journal of Composite Materials, 54(6), 813–833. https://doi.org/10.1177/0021998319865307
  • Das, D. K., Mishra, P. C., Singh, S., & Pattanaik, S. (2014). Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites- a review. International Journal of Mechanical and Materials Engineering, 9(1), 1–15. https://doi.org/10.1186/s40712-014-0006-7
  • Das, D. K., Mishra, P. C., Singh, S., & Thakur, R. K. (2014). Properties of ceramic-reinforced aluminium matrix composites- a review. International Journal of Mechanical and Materials Engineering, 9(1), 1–16. https://doi.org/10.1186/s40712-014-0012-9
  • El-Sabbagh, A. M., Soliman, M., Taha, M. A., & Palkowski, H. (2013). Effect of rolling and heat treatment on tensile behaviour of wrought Al-SiCp composites prepared by stir-casting. Journal of Materials Processing Technology, 213(10), 1669–1681. https://doi.org/10.1016/j.jmatprotec.2013.04.013
  • Emara, M. M. (2017). Enhanced tensile, hardness and wear behaviors of pure aluminum matrix reinforced with steel chips via powder metallurgy technique. IOP Conference Series: Materials Science and Engineering, 191, 012041. https://doi.org/10.1088/1757-899X/191/1/012041
  • Estrin, Y., & Vinogradov, A. (2013). Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta materialia, 61(3), 782–817. https://doi.org/10.1016/j.actamat.2012.10.038
  • Fathy, A., El-Kady, O., & Mohammed, M. M. M. (2015). Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route. Transactions of Nonferrous Metals Society of China (English Ed), 25(1), 46–53.https://doi.org/10.1016/S1003-6326(15)63577-4
  • Gao, M., Kang, H., Chen, Z., Guo, E., Peng, P., & Wang, T. (2019). Effect of reinforcement content and aging treatment on microstructure and mechanical behavior of B4Cp/6061Al composites. Materials Science and Engineering: A, 744, 682–690. https://doi.org/10.1016/j.msea.2018.12.042
  • Garg, P., Jamwal, A., Kumar, D., Sadasivuni, K. K., Hussain, C. M., & Gupta, P. (2019). Advance research progresses in aluminium matrixcomposites: Manufacturing & applications. Journal of Materials Research and Technology, 8(5), 4924–4939. https://doi.org/10.1016/j.jmrt.2019.06.028
  • Gopi Krishna, M., Praveen Kumar, K., Naga Swapna, M., Babu Rao, J., & NRMR, B. (2018). Fabrication, characterization and mechanical behaviour of A356/copper particulate reinforced metallic composites. Materials Today: Proceedings, 5(2), 7685–7691. https://doi.org/10.1016/j.matpr.2017.11.444
  • Haque, S., Ansari, A. H., & Bharti, P. K. (2014). Effect of process parameters on wear rate of Al 6061-Cu reinforced SiCp metal matrix composites. Journal of Materials and Environmental Science, 5, 1485–1489.
  • Hima Gireesh, C., Durga Prasad, K., & Ramji, K. (2018). Experimental investigation on mechanical properties of an Al6061 hybrid metal matrix composite. Journal of Composites Science, 2(3), 49. https://doi.org/10.3390/jcs2030049
  • Jayakumar, K., Mathew, J., Joseph, M. A., Kumar, R. S., Shukla, A. K., & Samuel, M. G. (2013). Synthesis and characterization of A356-Sicp composite produced through vacuum hot pressing. Mater Manuf Process, 28, 991–998. https://doi.org/10.1080/10426914.2013.773012
  • Khalili, V., Heidarzadeh, A., Moslemi, S., & Fathyunes, L. (2020). Production of Al6061 matrix composites with ZrO2 ceramic reinforcement using a low-cost stir casting technique: Microstructure, mechanical properties, and electrochemical behavior. Journal of Materials Research and Technology, 9(6), 15072–15086. https://doi.org/10.1016/j.jmrt.2020.10.095
  • Madhusudan, S., Sarcar, M. M. M., & NRMR, B. (2009). Fabrication and characterization of aluminium–copper composites. Journal of Alloys and Compounds, 471(1–2), 116–118. https://doi.org/10.1016/j.jallcom.2008.04.025
  • Mahadevan, K., Raghukandan, K., Pai, B. C., & Pillai, U. T. S. (2008). Influence of precipitation hardening parameters on the fatigue strength of AA 6061-SiCp composite. Journal of Materials Processing Technology, 198(1–3), 241–247. https://doi.org/10.1016/j.jmatprotec.2007.06.075
  • Manjunatha, B., Niranjan, H. B., & Satyanarayana, K. G. (2015). Effect of mechanical and thermal loading on boron carbide particles reinforced Al-6061 alloy. Materials Science and Engineering: A, 632, 147–155. https://doi.org/10.1016/j.msea.2015.02.007
  • Martinova, Z., Damgaliev, D., & Hirsh, M. (2002). The effect of room temperature pre-ageing on tensile and electrical properties of thermomechanically treated Al-Mg-Si alloy. Journal of Mining and Metallurgy, Section B: Metallurgy, 38, 61–73. https://doi.org/10.2298/jmmb0202061m
  • Maurya, M., Kumar, S., & Bajpai, V. (2019). Assessment of the mechanical properties of aluminium metal matrix composite: A review. Journal of Reinforced Plastics and Composites, 38(6), 267–298. https://doi.org/10.1177/0731684418816379
  • Ogunsanya, O. A., Akinwande, A. A., Balogun, O. A., Romanovski, V., & Kumar, M. S. (2023). Mechanical and damping behavior of artificially aged Al 6061/TiO2 reinforced composites for aerospace applications. Particulate Science and Technology, 41(2), 196–208. https://doi.org/10.1080/02726351.2022.2065652
  • Ozturk, F., Sisman, A., Toros, S., Kilic, S., & Picu, R. C. (2010). Influence of aging treatment on mechanical properties of 6061 aluminum alloy. Materials & Design, 31(2), 972–975. https://doi.org/10.1016/j.matdes.2009.08.017
  • Poovazhagan, L., Jayakumar, K., Bharat, R., Viswanathan, K., Akshay, M., & Jaikumar, A. (2016). Synthesis and machining characterization of ultrasonication assisted stir cast SiCp reinforced aluminum nanocomposites. Materials Today: Proceedings, 3(6), 2339–2346. https://doi.org/10.1016/j.matpr.2016.04.145
  • Rajan, T. V., Sharma, C. P., & Sharma, A. (2012). Heat treatment: Principles and Techniques (Second ed.). PHI Learning Private Limited.
  • Ramanathan, A., Krishnan, P. K., & Muraliraja, R. (2019). A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities. Journal of Manufacturing Processes, 42, 213–245. https://doi.org/10.1016/j.jmapro.2019.04.017
  • Revankar, A. G., Chakravarthy, P., & Kumar, R. A. (2017). Influence of cold work on the microstructural evolution and hardness during aging of AA6061 Alloy. Transactions of the Indian Institute of Metals, 70(3), 623–630. https://doi.org/10.1007/s12666-017-1080-3
  • Reza, A., Lara, A., & Reed-Hill, R. E. (2009). Physical Metallurgy Principles (Fourth Ed ed.). Cengage Learning.
  • Rofman, O. V., Mikhaylovskaya, A. V., Kotov, A. D., Prosviryakov, A. S., & Portnoy, V. K. (2019). Effect of thermomechanical treatment on properties of an extruded Al-3.0Cu-1.2Mg/SiCp composite. Materials Science and Engineering: A, 739, 235–243. https://doi.org/10.1016/j.msea.2018.10.053
  • Sanyal, S., Chabri, S., Chatterjee, S., Bhowmik, N., Metya, A. K., & Sinha, A. (2016). Tribological behavior of thermomechanically treated Al–Mg–Si alloy by nanoscratch measurements. Tribology International, 102, 125–132. https://doi.org/10.1016/j.triboint.2016.05.029
  • Sekar, K., & Jayakumar, K. (2020). Mechanical properties of AA 5754 hybrid metal matrix composite fabricated through rheo-squeeze casting. Materials Science Forum, 979, 10–15. https://doi.org/10.4028/www.scientific.net/MSF.979.10
  • Sekar, K., Manohar, M., & Jayakumar, K. (2019). Mechanical and tribological properties of A356/Al2O3/MoS2 hybrid composites synthesized through combined stir and squeeze casting. In A. Lakshminarayanan, S. Idapalapati, & M. Vasudevan (Eds.), Advances in Materials and Metallurgy. Lecture Notes in Mechanical Engineering (pp. 115–125). Springer. https://doi.org/10.1007/978-981-13-1780-4_13
  • Shankar, M. G., Sharma, S. S., Kini, U. A., Hiremath, P., & Gurumurthy, G. (2017). Microstructure and fracture behaviour of two stage stir cast Al6061-SiC composites. Journal of Materials and Environmental Science, 8(1), 257–263.
  • Tan, C. F., & Said, M. R. (2009). Effect of hardness test on precipitation hardening aluminium alloy 6061-T6. Chiang Mai Journal of Science, 36(3), 276–286.
  • Tao, R., Zhao, Y., Kai, X., Zhao, Z., Ding, R., Liang, L., & Xu, W. (2018). Effects of hot rolling deformation on the microstructure and tensile properties of an in situ-generated ZrB2 nanoparticle-reinforced AA6111 composite. Materials Science and Engineering A, 732, 138–147. https://doi.org/10.1016/j.msea.2018.06.107
  • Terada, D., Kaneda, Y., Horita, Z., Matsuda, K., Hirosawa, S., & Tsuji, N. (2014). Mechanical properties and microstructure of 6061 aluminum alloy severely deformed by ARB process and subsequently aged at low temperatures. IOP Conference Series: Materials Science and Engineering, 63, 63. https://doi.org/10.1088/1757-899X/63/1/012088
  • Vedrtnam, A., & Kumar, A. (2017). Fabrication and wear characterization of silicon carbide and copper reinforced aluminium matrix composite. Materials Discovery, 9, 16–22. https://doi.org/10.1016/j.md.2018.01.002
  • Yadav, D., & Bauri, R. (2010). Nickel particle embedded aluminium matrix composite with high ductility. Materials Letters, 64(6), 664–667. https://doi.org/10.1016/j.matlet.2009.12.030
  • Yoo, S. C., Kang, B., Van Trinh, P., Phuong, D. D., & Hong, S. H. (2020). Enhanced mechanical and wear properties of Al6061 alloy nanocomposite reinforced by CNT-template-grown core–shell CNT/SiC nanotubes. Scientific Reports, 10(1), 12896. https://doi.org/10.1038/s41598-020-69341-z
  • Zare, R., Sharifi, H., Saeri, M. R., & Tayebi, M. (2019). Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite. Journal of Alloys and Compounds, 801, 520–528. https://doi.org/10.1016/j.jallcom.2019.05.317
  • Zhang, X., Huang, L. K., Zhang, B., Chen, Y. Z., Duan, S. Y., Liu, G., Yang, C. L., & Liu, F. (2019). Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment. Materials Science and Engineering A, 753, 168–178. https://doi.org/10.1016/j.msea.2019.03.039
  • Zheng, R., Yang, H., Liu, T., Ameyama, K., & Ma, C. (2014). Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles. Materials & Design, 53, 512–518. https://doi.org/10.1016/j.matdes.2013.07.048