1,438
Views
4
CrossRef citations to date
0
Altmetric
PRODUCTION & MANUFACTURING

A systematic literature review on energy-efficient hybrid flow shop scheduling

, , , &
Article: 2206074 | Received 18 Oct 2022, Accepted 18 Apr 2023, Published online: 01 May 2023

References

  • Ab Rashid, M. F. F., & Mu’tasim, M. A. N. (2022). A novel Tiki-Taka algorithm to optimize hybrid flow shop scheduling with energy consumption. Engineering Applied Science Research, 49(2), 189–37.
  • Behnamian, J., & Ghomi, S. F. (2011). Hybrid flowshop scheduling with machine and resource-dependent processing times. Applied Mathematical Modelling, 35(3), 1107–1123. https://doi.org/10.1016/j.apm.2010.07.057
  • Biel, K., Zhao, F., Sutherland, J. W., & Glock, C. H. (2018). Flow shop scheduling with grid-integrated onsite wind power using stochastic MILP. International Journal of Production Research, 56(5), 2076–2098. https://doi.org/10.1080/00207543.2017.1351638
  • Bruzzone, A. A., Anghinolfi, D., Paolucci, M., & Tonelli, F. (2012). Energy-aware scheduling for improving manufacturing process sustainability: A mathematical model for flexible flow shops. CIRP Annals, 61(1), 459–462. https://doi.org/10.1016/j.cirp.2012.03.084
  • Chen, T. L., Cheng, C. Y., & Chou, Y. H. (2020). Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming. Annals of Operations Research, 290(1), 813–836. https://doi.org/10.1007/s10479-018-2969-x
  • Cheng, Q., Liu, C., Chu, H., Liu, Z., Zhang, W., & Pan, J. (2020). A new multi-objective hybrid flow shop scheduling method to fully utilize the residual forging heat. EEE Access, 8, 151180–151194. https://doi.org/10.1109/ACCESS.2020.3017239
  • Chen, W., Wang, J., Yu, G., & Hu, Y. (2022). Energy-efficient hybrid flow-shop scheduling under time-of-use and ladder electricity tariffs. Journal, Type of Article, 12(13), 6456. https://doi.org/10.3390/app12136456
  • Dai, M., Tang, D., Giret, A., Salido, M. A., & Li, W. D. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing, 29(5), 418–429. https://doi.org/10.1016/j.rcim.2013.04.001
  • Dai, M., Tang, D., Zhang, H., & Yang, J. (2014, May). Energy-aware scheduling model and optimization for a flexible flow shop problem. Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, China (pp. 323–328). IEEE.
  • Ding, X. L., Zhu, J., & Liu, C. (2014). Lagrangian relaxation algorithms for hybrid flow-shop scheduling problems with energy saving. In Wen-Pei S. (Ed.), Advanced Materials Research (Vol. 997, pp. 821–826). Trans Tech Publ.
  • Dong, J., & Ye, C. (2022). Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system. Computers & Industrial Engineering, 169, 108146. https://doi.org/10.1016/j.cie.2022.108146
  • Duan, J., Feng, M., & Zhang, Q. (2022). Energy-efficient collaborative scheduling of heterogeneous multi-stage hybrid flowshop for large metallic component manufacturing. Journal of Cleaner Production, 375, 134148. https://doi.org/10.1016/j.jclepro.2022.134148
  • Du, B., Chen, H., Huang, G. Q., & Yang, H. (2011). Preference vector ant colony system for minimising make-span and energy consumption in a hybrid flow shop. In Lihui, W., Amos H. C., Ng., & Kalyanmoy, D. (Eds.), Multi-objective evolutionary optimisation for product design and manufacturing (pp. 279–304). Springer.
  • Fernandes, J. M. R. C., Homayouni, S. M., & Fontes, D. B. M. M. (2022). Energy-efficient scheduling in job shop manufacturing systems: A literature review. Sustainability, 14(10), 6264. https://doi.org/10.3390/su14106264
  • Fernandez-Viagas, V., Perez-Gonzalez, P., & Framinan, J. M. (2019). Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective. Computers & Operations Research, 109, 77–88. https://doi.org/10.1016/j.cor.2019.05.002
  • Gahm, C., Denz, F., Dirr, M., & Tuma, A. (2016). Energy-efficient scheduling in manufacturing companies: A review and research framework. European Journal of Operational Research, 248(3), 744–757. https://doi.org/10.1016/j.ejor.2015.07.017
  • Gao, K., Huang, Y., Sadollah, A., & Wang, L. (2020). A review of energy-efficient scheduling in intelligent production systems. Complex & Intelligent Systems, 6(2), 237–249. https://doi.org/10.1007/s40747-019-00122-6
  • Geng, K., Liu, L., & Wu, Z. (2022). Energy-efficient distributed heterogeneous re-entrant hybrid flow shop scheduling problem with sequence dependent setup times considering factory eligibility constraints. Scientific Reports, 12(1), 18741. https://doi.org/10.1038/s41598-022-23144-6
  • Geng, K., Ye, C., Cao, L., & Liu, L. (2019). Multi-objective reentrant hybrid flowshop scheduling with machines turning on and off control strategy using improved multi-verse optimizer algorithm. Mathematical Problems in Engineering, 2019, 1–18. https://doi.org/10.1155/2019/2573873
  • Geng, K., Ye, C., Liu, L., & Liu, L. (2020). Bi-objective re-entrant hybrid flow shop scheduling considering energy consumption cost under time-of-use electricity tariffs. Complexity, 2020, 1–17. https://doi.org/10.1155/2020/8565921
  • Geng, K., Ye, C., & Metawa, N. (2021). A memetic algorithm for energy-efficient distributed re-entrant hybrid flow shop scheduling problem. Journal of Intelligent & Fuzzy Systems, (Preprint), 1–21. https://doi.org/10.3233/JIFS-189838
  • Gong, G., Chiong, R., Deng, Q., Han, W., Zhang, L., Lin, W., & Li, K. (2020). Energy-efficient flexible flow shop scheduling with worker flexibility. Expert Systems with Applications, 141, 112902. https://doi.org/10.1016/j.eswa.2019.112902
  • Gui, L., Gao, L., & Li, X. (2020). Anomalies in special permutation flow shop scheduling problems. Chinese Journal of Mechanical Engineering, 33(1), 1–7. https://doi.org/10.1186/s10033-020-00462-2
  • Han, X., Han, Y., Zhang, B., Qin, H., Li, J., Liu, Y., & Gong, D. (2022). An effective iterative greedy algorithm for distributed blocking flowshop scheduling problem with balanced energy costs criterion. Applied Soft Computing, 129, 109502. https://doi.org/10.1016/j.asoc.2022.109502
  • Hasani, A., & Hosseini, S. M. H. (2020). A bi-objective flexible flow shop scheduling problem with machine-dependent processing stages: Trade-off between production costs and energy consumption. Applied Mathematics and Computation, 386, 125533. https://doi.org/10.1016/j.amc.2020.125533
  • Huang, R. H., Yu, S. C., & Chen, P. H. (2017). Energy-saving scheduling in a flexible flow shop using a hybrid genetic algorithm. Journal of Environmental Protection, 8(10), 1037–1056. https://doi.org/10.4236/jep.2017.810066
  • Jabari, A. N. A. A. K., & Hasan, A. J. J. T. I. (2021). Energy-aware scheduling in hybrid flow shop using firefly algorithm. Tsinghua Science and Technology, 22(1), 18–30.
  • Jiang, E., Wang, L., & Wang, J. (2021). Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop scheduling with multiprocessor tasks. Tsinghua Science and Technology, 26(5), 646–663.
  • Jiang, S. L., & Zhang, L. (2019). Energy-oriented scheduling for hybrid flow shop with limited buffers through efficient multi-objective optimization. IEEE Access, 7, 34477–34487. https://doi.org/10.1109/ACCESS.2019.2904848
  • Keller, F., Schönborn, C., & Reinhart, G. (2015). Energy-orientated machine scheduling for hybrid flow shops. Procedia CIRP, 29, 156–161. https://doi.org/10.1016/j.procir.2015.02.103
  • Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering. Citeseer.
  • Kong, L., Wang, L., Li, F., Wang, G., Fu, Y., & Liu, J. (2020). A new sustainable scheduling method for hybrid flow-shop subject to the characteristics of parallel machines. Institute of Electrical and Electronics EngineersAccess, 8, 79998–80009.
  • Lei, D., Gao, L., & Zheng, Y. (2017). A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop. IEEE Transactions on Engineering Management, 65(2), 330–340. https://doi.org/10.1109/TEM.2017.2774281
  • Lian, X., Zheng, Z., Wang, C., & Gao, X. (2021). An energy-efficient hybrid flow shop scheduling problem in steelmaking plants. Computers Industrial Engineering, 162, 107683. https://doi.org/10.1016/j.cie.2021.107683
  • Li, X., Deng, Z., Chen, Z., & Fei, Q. (2010). Analysis and simplification of three-dimensional space vector PWM for three-phase four-leg inverters. IEEE Transactions on Industrial Electronics, 58(2), 450–464. https://doi.org/10.1109/TIE.2010.2046610
  • Li, M., Lei, D., & Cai, J. (2019). Two-level imperialist competitive algorithm for energy-efficient hybrid flow shop scheduling problem with relative importance of objectives. SwarmEvolutionary Computation, 49(September 2019), 34–43.
  • Ling-Li, Z., Feng-Xing, Z., Xiao-Hong, X., & Zheng, G. (2009, June). Dynamic scheduling of multi-task for hybrid flow-shop based on energy consumption. Proceedings of the 2009 international conference on information and automation, Zhuhai/Macau, China (pp. 478–482). IEEE.
  • Liu, Y., Farnsworth, M., & Tiwari, A. (2018). Energy-efficient scheduling of flexible flow shop of composite recycling. International Journal of Advanced Manufacturing Technology, 97(1–4), 117–127. https://doi.org/10.1007/s00170-018-1852-x
  • Liu, C. H., & Huang, D. H. (2014). Reduction of power consumption and carbon footprints by applying multi-objective optimisation via genetic algorithms. International Journal of Production Research, 52(2), 337–352. https://doi.org/10.1080/00207543.2013.825740
  • Liu, Z., Yan, J., Cheng, Q., Chu, H., Zheng, J., & Zhang, C. (2022). Adaptive selection multi-objective optimization method for hybrid flow shop green scheduling under finite variable parameter constraints: Case study. International Journal of Production Research, 60(12), 3844–3862. https://doi.org/10.1080/00207543.2021.1933239
  • Liu, Z., Yan, J., Cheng, Q., Yang, C., Sun, S., & Xue, D. (2020). The mixed production mode considering continuous and intermittent processing for an energy-efficient hybrid flow shop scheduling. Journal of Cleaner Production, 246, 119071. https://doi.org/10.1016/j.jclepro.2019.119071
  • Liu, M., Yang, X., Chu, F., Zhang, J., & Chu, C. (2020). Energy-oriented bi-objective optimization for the tempered glass scheduling. Omega, 90, 101995. https://doi.org/10.1016/j.omega.2018.11.004
  • Liu, X., Zou, F., & Zhang, X. (2008, July). Mathematical model and genetic optimization for hybrid flow shop scheduling problem based on energy consumption. Proceedings of the 2008 Chinese control and decision conference, Yantai, Shandong (pp. 1002–1007). IEEE.
  • Li, M., Wang, G. G., & Yu, H. (2021). Sorting-based discrete artificial bee colony algorithm for solving fuzzy hybrid flow shop green scheduling problem. Mathematics, 9(18), 2250. https://doi.org/10.3390/math9182250
  • Li, C., Zhang, B., Han, Y., Wang, Y., Li, J., & Gao, K. (2023). Energy-efficient hybrid flowshop scheduling with consistent sublots using an improved cooperative coevolutionary algorithm. Journal, Type of Article, 11(1), 77.
  • Lu, C., Gao, L., Li, X., Zheng, J., & Gong, W. (2018). A multi-objective approach to welding shop scheduling for makespan, noise pollution and energy consumption. Journal of Cleaner Production, 196, 773–787. https://doi.org/10.1016/j.jclepro.2018.06.137
  • Lu, C., Gao, L., Pan, Q., Li, X., & Zheng, J. (2019). A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution. Applied Soft Computing, 75, 728–749. https://doi.org/10.1016/j.asoc.2018.11.043
  • Lu, C., Liu, Q., Zhang, B., & Yin, L. (2022). A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop. Expert Systems with Applications, 204, 117555. https://doi.org/10.1016/j.eswa.2022.117555
  • Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International Journal of Production Economics, 146(2), 423–439. https://doi.org/10.1016/j.ijpe.2013.01.028
  • Luo, J., Fujimura, S., El Baz, D., & Plazolles, B. (2019). GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem. Journal of Parallel and Distributed Computing, 133, 244–257. https://doi.org/10.1016/j.jpdc.2018.07.022
  • Lu, H., & Qiao, F. (2022). An efficient adaptive genetic algorithm for energy saving in the hybrid flow shop scheduling with batch production at last stage. Expert Systems, 39(2), e12678. https://doi.org/10.1111/exsy.12678
  • Meng, L., Zhang, C., Shao, X., Ren, Y., & Ren, C. (2019). Mathematical modelling and optimisation of energy-conscious hybrid flow shop scheduling problem with unrelated parallel machines. International Journal of Production Research, 57(4), 1119–1145. https://doi.org/10.1080/00207543.2018.1501166
  • Morais, M. D. F., & Perassoli Boiko, T. J. (2013). Hybrid flow shop scheduling problems involving setup considerations: A literature review and analysis. International Journal of Industrial Engineering, 20(11–12), 614–630.
  • Nasiri, M. M., Abdollahi, M., Rahbari, A., Salmanzadeh, N., & Salesi, S. (2018). Minimizing the energy consumption and the total weighted tardiness for the flexible flowshop using NSGA-II and NRGA. Journal of Industrial and Systems Engineering, 11(Special issue), 150–162. 14th International Industrial Engineering Conference.
  • Öztop, H., Tasgetiren, M. F., Kandiller, L., Eliiyi, D. T., & Gao, L. (2020). Ensemble of metaheuristics for energy-efficient hybrid flowshops: Makespan versus total energy consumption. Swarm Evolutionary Computation, 54, 100660. https://doi.org/10.1016/j.swevo.2020.100660
  • Qin, H. X., Han, Y., Li, J., Sang, H., Chen, Q., Meng, L., & Zhang, B. (2021, May). A quick and effective iterated greedy algorithm for energy-efficient hybrid flow shop scheduling problem with blocking constraint. Proceedings of the 11th International Conference on Information Science and Technology (ICIST), Chengdu, China (pp. 325–331). IEEE.
  • Qin, H. X., Han, Y. Y., Liu, Y. P., Li, J. Q., Pan, Q. K., & Xue, H. (2022). A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints. Expert Systems with Applications, 201, 117256. https://doi.org/10.1016/j.eswa.2022.117256
  • Qin, H., Han, Y., Wang, Y., Liu, Y., Li, J., & Pan, Q. (2022). Intelligent optimization under blocking constraints: A novel iterated greedy algorithm for the hybrid flow shop group scheduling problem. Knowledge-Based Systems, 258, 109962. https://doi.org/10.1016/j.knosys.2022.109962
  • Qin, H. X., Han, Y. Y., Zhang, B., Meng, L. L., Liu, Y. P., Pan, Q. K., & Gong, D. W. (2022). An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem. Swarm and Evolutionary Computation, 69, 100992. https://doi.org/10.1016/j.swevo.2021.100992
  • Rashid, M. F. F. A., Mohd Rose, A. N., & Nik Mohamed, N. M. Z. (2022). Hybrid flow shop scheduling with energy consumption in machine shop using moth flame optimization. In Ahmad, F. Ab. N., Ahmad, N. I., Ismayuzri, I., Nafrizuan, M. Y., Muhammad, A. Z., Anwar, P. P., & Abdul, M. (Eds.), Recent Trends in Mechatronics Towards Industry 4.0 (pp. 77–86). Springer Singapore.
  • Rashid, M. F. F. A., & Osman, M. A. H. (2020, April). Optimisation of energy efficient hybrid flowshop scheduling problem using firefly algorithm. Proceedings of the 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE), Malaysia (pp. 36–41). IEEE.
  • Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers Operations Research, 37(8), 1439–1454. https://doi.org/10.1016/j.cor.2009.11.001
  • Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1–18. https://doi.org/10.1016/j.ejor.2009.09.024
  • Schulz, S. (2018). A multi-criteria MILP formulation for energy aware hybrid flow shop scheduling. Proceedings of the Operations Research Proceedings 2016: Selected Papers of the Annual International Conference of the German Operations Research Society (GOR),Helmut Schmidt University Hamburg, Germany (pp. 543–549). Springer International Publishing.
  • Schulz, S. (2019). A genetic algorithm to solve the hybrid flow shop scheduling problem with subcontracting options and energy cost consideration. Proceedings of the Information Systems Architecture and Technology: Proceedings of 39th International Conference on Information Systems Architecture and Technology–ISAT 2018: Part III, Nysa, Poland (pp. 263–273). Springer International Publishing.
  • Schulz, S., Buscher, U., & Shen, L. (2020). Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices. Journal of Business Economics, 90(9), 1–29. https://doi.org/10.1007/s11573-020-00971-5
  • Schulz, S., Neufeld, J. S., & Buscher, U. (2019). A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421–434. https://doi.org/10.1016/j.jclepro.2019.03.155
  • Shao, W., Shao, Z., & Pi, D. (2022a). A multi-neighborhood-based multi-objective memetic algorithm for the energy-efficient distributed flexible flow shop scheduling problem. Neural Computing & Applications, 34(24), 22303–22330. https://doi.org/10.1007/s00521-022-07714-3
  • Shao, W., Shao, Z., & Pi, D. (2022b). A network memetic algorithm for energy and labor-aware distributed heterogeneous hybrid flow shop scheduling problem. Swarm and Evolutionary Computation, 75, 101190. https://doi.org/10.1016/j.swevo.2022.101190
  • Shen, K., De Pessemier, T., Martens, L., & Joseph, W. (2021). A parallel genetic algorithm for multi-objective flexible flowshop scheduling in pasta manufacturing. Computers Industrial Engineering, 161, 107659. https://doi.org/10.1016/j.cie.2021.107659
  • Shi, L., Guo, G., & Song, X. (2019). Multi-agent based dynamic scheduling optimisation of the sustainable hybrid flow shop in a ubiquitous environment. International Journal of Production Research, 52(2), 576–597.
  • Song, C. (2021). A hybrid multi-objective teaching-learning based optimization for scheduling problem of hybrid flow shop with unrelated parallel machine. Institute of Electrical and Electronics Engineers Access, 9, 56822–56835.
  • Tang, D., Dai, M., Salido, M. A., & Giret, A. (2016). Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Computers in Industry, 81, 82–95. https://doi.org/10.1016/j.compind.2015.10.001
  • Tang, L., Liu, W., & Liu, J. (2005). A neural network model and algorithm for the hybrid flow shop scheduling problem in a dynamic environment. Journal of Intelligent Manufacturing, 16(3), 361–370. https://doi.org/10.1007/s10845-005-7029-0
  • Tao, X. R., Li, J. Q., Huang, T. H., & Duan, P. (2021). Discrete imperialist competitive algorithm for the resource-constrained hybrid flowshop problem with energy consumption. Complex & Intelligent Systems, 7(1), 311–326. https://doi.org/10.1007/s40747-020-00193-w
  • Tian, X. K., Ma, B. C., Zhang, J. W., Zhao, R. Y., & Wang, J. (2019, April). Research on multi-objective optimization and simulation to HFSSP hybrid flow-shop scheduling problem for energy saving. Proceedings of the IOP Conference Series: Materials Science and Engineering, Qingdao, China (Vol. 504, No. 1, pp. 012108). IOP Publishing.
  • Tosun, Ö., Marichelvam, M. K., & Tosun, N. (2020). A literature review on hybrid flow shop scheduling. International Journal of Advanced Operations Management, 12(2), 156–194. https://doi.org/10.1504/IJAOM.2020.108263
  • Utama, D. M. (2019). An effective hybrid sine cosine algorithm to minimize carbon emission on flow-shop scheduling sequence dependent setup. Jurnal Teknik Industri, 20(1), 62–72. https://doi.org/10.22219/JTIUMM.Vol20.No1.62-72
  • Utama, D. M. (2021a, March). Hybrid grey wolf algorithm for energy-efficient scheduling with sequence-dependent setup times: A case study. Proceedings of the IOP Conference Series: Materials Science and Engineering (Vol. 1096, No. 1, pp. 012116). IOP Publishing.
  • Utama, D. M. (2021b, March). Minimizing Number of Tardy Jobs in Flow Shop Scheduling Using a Hybrid Whale Optimization Algorithm. Proceedings of the Journal of Physics: Conference Series (Vol. 1845, No. 1, pp. 012017). IOP Publishing.
  • Utama, D. M. (2022, July). An effective hybrid crow search algorithm for energy-efficient flow shop scheduling. Proceedings of the AIP Conference Proceedings, Malang, Indonesia (Vol. 2453, No. 1, pp. 020040). AIP Publishing LLC.
  • Utama, D. M., Baroto, T., Maharani, D. M., Jannah, F. R., & Octaria, R. A. (2018). Algoritma ant-lion optimizer untuk meminimasi emisi karbon pada penjadwalan flow shop dependent sequence set-up. Jurnal Litbang Industri, 9(1), 69–78. https://doi.org/10.24960/jli.v9i1.4775.69-78
  • Utama, D. M., Ibrahim, M. F., Wijaya, D. S., Widodo, D. S., & Primayesti, M. D. (2022, December). A Novel Hybrid Multi-Verse Optimizer Algorithm for Energy-Efficient Permutation Flow Shop Scheduling Problem. Proceedings of the Journal of Physics: Conference Series, Malang, Indonesia (Vol. 2394, No. 1, p. 012006). IOP Publishing.
  • Utama, D. M., & Primayesti, M. D. (2022). A novel hybrid Aquila optimizer for energy-efficient hybrid flow shop scheduling. Results in Control and Optimization, 9, 100177. https://doi.org/10.1016/j.rico.2022.100177
  • Utama, D. M., Salima, A. A. P., & Widodo, D. S. (2022). A novel hybrid Archimedes optimization algorithm for energy-efficient hybrid flow shop scheduling. International Journal of Advances in Intelligent Informatics, 8(2), 237–250. https://doi.org/10.26555/ijain.v8i2.724
  • Utama, D. M., & Widodo, D. S. (2021). An energy-efficient flow shop scheduling using hybrid Harris hawks optimization. Bulletin of Electrical Engineering and Informatics, 10(3), 1154–1163. https://doi.org/10.11591/eei.v10i3.2958
  • Utama, D. M., Widodo, D. S., Ibrahim, M. F., & Dewi, S. K. (2020). An effective hybrid ant lion algorithm to minimize mean tardiness on permutation flow shop scheduling problem. International Journal of Advances in Intelligent Informatics, 6(1), 23–35. https://doi.org/10.26555/ijain.v6i1.385
  • Utama, D. M., Widodo, D. S., Wicaksono, W., & Ardiansyah, L. R. (2019). A new hybrid metaheuristics algorithm for minimizing energy consumption in the flow shop scheduling problem. International Journal of Technology, 10(2), 320–331. https://doi.org/10.14716/ijtech.v10i2.2194
  • Wang, J., Du, H., Xing, J., Qiao, F., & Ma, Y. J. (2020). Novel energy-and maintenance-aware collaborative scheduling for a hybrid flow shop based on dual memetic algorithms. IEEE Robotics Automation Letters, 5(4), 5613–5620. https://doi.org/10.1109/LRA.2020.3005626
  • Wang, B., Huang, K., & Li, T. (2018). Two-stage hybrid flowshop scheduling with simultaneous processing machines. Journal of Scheduling, 21(4), 387–411. https://doi.org/10.1007/s10951-017-0545-x
  • Wang, L., Kong, L., Li, F., & Lv, X. (2021). A ranking-based differential evolution algorithm for hybrid flow shop sustainable scheduling. Research Square, https://doi.org/10.21203/rs.3.rs-175466/v1
  • Wang, G., Li, X., Gao, L., Li, P. J. S., & Computation, E. (2021). Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D. Swarm and Evolutionary Computation, 62, 100858. https://doi.org/10.1016/j.swevo.2021.100858
  • Wang, J. J., & Wang, L. (2021). A cooperative memetic algorithm with learning-based agent for energy-aware distributed hybrid flow-shop scheduling. IEEE Transactions on Evolutionary Computation, 26(3), 461–475. https://doi.org/10.1109/TEVC.2021.3106168
  • Wang, J. -J., & Wang, L. (2022). A cooperative memetic algorithm with feedback for the energy-aware distributed flow-shops with flexible assembly scheduling. Computers & Industrial Engineering, 168, 108126. https://doi.org/10.1016/j.cie.2022.108126
  • Wang, S., Wang, X., Chu, F., & Yu, J. (2020). An energy-efficient two-stage hybrid flow shop scheduling problem in a glass production. International Journal of Production Research, 58(8), 2283–2314. https://doi.org/10.1080/00207543.2019.1624857
  • Widodo, D. S. and Utama, D. M., “The hybrid ant lion optimization flow shop scheduling problem for minimizing completion time,” in International Conference on Science and Technology 2019 Surabaya, Indonesia, 2020, vol. 1569, no. 2, p. 022097: IOP Publishing.
  • Wu, X., Shen, X., & Cui, Q. (2018). Multi-objective flexible flow shop scheduling problem considering variable processing time due to renewable energy. Sustainability, 10(3), 841. https://doi.org/10.3390/su10030841
  • Wu, X., Xiao, X., & Cui, Q. (2020). Multi-objective flexible flow shop batch scheduling problem with renewable energy. International Journal of Automation Control, 14(5–6), 519–553. https://doi.org/10.1504/IJAAC.2020.110071
  • Xing, J., Qiao, F., & Lu, H. (2019). A hybrid multi-objective algorithm for energy-efficient scheduling considering machine maintenance. Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada (pp. 115–120). IEEE.
  • Xu, F., Tang, H., Xun, Q., Lan, H., Liu, X., Xing, W., Zhu, T., Wang, L., & Pang, S. (2022). Research on green reentrant hybrid flow shop scheduling problem based on improved moth-flame optimization algorithm. Processes, 10(12), 2475. https://doi.org/10.3390/pr10122475
  • Xu, F., Weng, W., and Fujimura, S. (2014). Energy-efficient scheduling for flexible flow shops by using MIP. IIE Annual Conference. Proceedings, San Antonio, Texas, USA (pp. 1040). Institute of Industrial and Systems Engineers (IISE).
  • Yankai, W., Shilong, W., Dong, L., Chunfeng, S., & Bo, Y. (2021). An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes. Expert Systems with Applications, 174, 114793. https://doi.org/10.1016/j.eswa.2021.114793
  • Yan, J., Li, L., Zhao, F., Zhang, F., & Zhao, Q. (2016). A multi-level optimization approach for energy-efficient flexible flow shop scheduling. Journal of Cleaner Production, 137, 1543–1552. https://doi.org/10.1016/j.jclepro.2016.06.161
  • Yan, J., Wen, J., and Li, L. (2014). Genetic algorithm based optimization for energy-aware hybrid flow shop scheduling. Proceedings on the international conference on artificial intelligence (ICAI), Las Vegas, USA (pp. 1). The Steering Committee of The World Congress in Computer Science, Computer
  • Yan, J. H., Zhang, F. Y., Li, X., Wang, Z. M., & Wang, W. (2014). Modeling and multiobjective optimization for energy-aware hybrid flow shop scheduling. Proceedings of 2013 4th International Asia Conference on Industrial Engineering and Management Innovation (IEMI2013), China (pp. 741–751). Springer.
  • Yaurima-Basaldua, V. H., Tchernykh, A., Villalobos-Rodríguez, F., & Salomon-Torres, R. (2018). Hybrid flow shop with unrelated machines, setup time, and work in progress buffers for bi-objective optimization of tortilla manufacturing. Algorithms, 11(5), 68. https://doi.org/10.3390/a11050068
  • Zeng, Z., Gao, L., & Hong, Z. (2022). Energy-aware scheduling of two-stage flexible flow shop based on group technology: Consideration of the Inconsistency of Process differences. International Journal of Computational Intelligence Systems, 15(1), 60. https://doi.org/10.1007/s44196-022-00124-2
  • Zeng, Z., Hong, M., Man, Y., Li, J., Zhang, Y., & Liu, H. (2018). Multi-object optimization of flexible flow shop scheduling with batch process—Consideration total electricity consumption and material wastage. Journal of Cleaner Production, 183, 925–939. https://doi.org/10.1016/j.jclepro.2018.02.224
  • Zhang, H., Li, J., Hong, M., & Man, Y. (2021). Artificial intelligence algorithm-based multi-objective optimization model of flexible flow shop smart scheduling (pp. 447–472).
  • Zhang, B., Pan, Q. K., Gao, L., Li, X. Y., Meng, L. L., & Peng, K. K. (2019). A multiobjective evolutionary algorithm based on decomposition for hybrid flowshop green scheduling problem. Computers & Industrial Engineering, 136, 325–344. https://doi.org/10.1016/j.cie.2019.07.036
  • Zhang, B., Pan, Q. K., Gao, L., Meng, L. L., Li, X. Y., & Peng, K. K. (2019). A three-stage multiobjective approach based on decomposition for an energy-efficient hybrid flow shop scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(12), 4984–4999. https://doi.org/10.1109/TSMC.2019.2916088
  • Zhang, M., Yan, J., Zhang, Y., & Yan, S. (2019). Optimization for energy-efficient flexible flow shop scheduling under time of use electricity tariffs. Procedia CIRP, 80, 251–256. https://doi.org/10.1016/j.procir.2019.01.062
  • Zhou, B. H., & Gu, J. (2021). Energy-awareness scheduling of unrelated parallel machine scheduling problems with multiple resource constraints. International Journal of Operational Research, 41(2), 196–217.
  • Zhou, R., Lei, D., & Zhou, X. (2019). Multi-objective energy-efficient interval scheduling in hybrid flow shop using imperialist competitive algorithm. IEEE Access, 7, 85029–85041. https://doi.org/10.1109/ACCESS.2019.2924998
  • Zhou, B. & Liu, W. (2019). Energy-efficient multi-objective scheduling algorithm for hybrid flow shop with fuzzy processing time Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, China (Vol. 233, no. 10, pp. 1282–1297).
  • Zuo, Y., Fan, Z., Zou, T., & Wang, P. (2021). A novel multi-population artificial bee colony algorithm for energy-efficient hybrid flow shop scheduling problem. Symmetry, 13(12), 2421. https://doi.org/10.3390/sym13122421