1,059
Views
0
CrossRef citations to date
0
Altmetric
MATERIALS ENGINEERING

Thermogravimetric analysis of flax, jute, and UHMWPE fibers and their composites with melamine and phenol formaldehyde resins

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Article: 2209990 | Received 28 Mar 2023, Accepted 22 Apr 2023, Published online: 14 May 2023

References

  • Abdelmouleh, M., Boufi, S., Belgacem, M. N., & Dufresne, A. (2007). Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Composites Science and Technology, 67(7–8), 1627–16. https://doi.org/10.1016/j.compscitech.2006.07.003
  • Aji, I. S., Zainudin, E. S., Khalina, A., Sapuan, S. M., & Khairul, M. D. (2012). Thermal property determination of hybridized kenaf/PALF reinforced HDPE composite by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 109(2), 893–900. https://doi.org/10.1007/s10973-011-1807-z
  • Albinante, S. R., Pacheco, E. B. A. V., & Visconte, L. L. (2013). Y.: Revisão dos tratamentos químicos da fibra natural para mistura com poliolefinas. Química Nova, 36(1), 114–122. https://doi.org/10.1590/S0100-40422013000100021
  • Ali, M. E., Yong, C. K., Ching, Y. C., Chuah, C. H., & Liou, N. S. (2015). Effect of single and double stage chemically treated kenaf fibers on mechanical properties of polyvinyl alcohol film. BioResources, 10(1), 822–838. https://doi.org/10.15376/biores.10.1.822-838
  • Aydın, M., Tozlu, H., Kemaloglu, S., Aytac, A., & Ozkoc, G. (2011). Effects of alkali treatment on the properties of short flax fiber–poly (lactic acid) eco-composites. Journal of Polymers and the Environment, 19(1), 11–17. https://doi.org/10.1007/s10924-010-0233-9
  • Berger, L., Kausch, H. H., & Plummer, C. J. (2003). G.: Structure and deformation mechanisms in UHMWPE-fibres. Polymer, 44(19), 5877–5884. https://doi.org/10.1016/S0032-3861(03)00536-6
  • Biswas, S., Shahinur, S., Hasan, M., & Ahsan, Q. (2015). Physical, mechanical and thermal properties of jute and bamboo fiber reinforced unidirectional epoxy composites. Procedia Engineering, 105, 933–939. https://doi.org/10.1016/j.proeng.2015.05.118
  • Boopalan, M., Niranjanaa, M., & Umapathy, M. J. (2013). Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Composites Part B: Engineering, 51, 54–57. https://doi.org/10.1016/j.compositesb.2013.02.033
  • Bottom, R. (2008). Thermogravimetric analysis. Principles and applications of thermal analysis (Vol. 3). Blackwell Publishing, Oxford OX4 2DQ.
  • Chinnasamy, V., Subramani, S. P., Palaniappan, S. K., Mylsamy, B., & Aruchamy, K. (2020). Characterization on thermal properties of glass fiber and Kevlar fiber with modified epoxy hybrid composites. Journal of Materials Research and Technology, 9(3), 3158–3167. https://doi.org/10.1016/j.jmrt.2020.01.061
  • Chin, J., Petit, S., Forster, A., Riley, M., & Rice, K. (2009). Effect of artificial perspiration and cleaning chemicals on the mechanical and chemical properties of ballistic materials. Journal of Applied Polymer Science, 113(1), 567–584. https://doi.org/10.1002/app.30124
  • Czigány, T. (2005). Basalt fiber reinforced hybrid polymer composites. Materials Science Forum, 473–474, 59–66. https://doi.org/10.4028/www.scientific.net/msf.473-474.59
  • Das, S. C., Paul, D., Fahad, M. M., Das, M. K., Rahman, G. S., & Khan, M. A. (2018). Effect of fiber loading on the mechanical properties of jute fiber reinforced polypropylene composites. Advances in Chemical Engineering and Science, 8(4), 215–224. https://doi.org/10.4236/aces.2018.84015
  • Ebrahimnezhad Khaljiri, H., Eslami-Farsani, R., & Banaie, K. A. (2017). The evaluation of the thermal and mechanical properties of aramid/semi-carbon fibers hybrid composites. Fibers and Polymers, 18(2), 296–302. https://doi.org/10.1007/s12221-017-6442-2
  • El-Shekeil, Y. A., Sapuan, S. M., Abdan, K., & Zainudin, E. S. (2012). Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Materials & Design, 40, 299–303. https://doi.org/10.1016/j.matdes.2012.04.003
  • Forster, A. L., Chin, J., Peng, J. S., Kang, K. L., Rice, K., & Al-Sheikhly, M. (2016). Long term stability of UHMWPE fibers. Mechanics of Composite and Multi-Functional Materials, 7, 369–375. https://doi.org/10.1007/978-3-319-21762-8_43
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J., Scalmani, G., Barone , V.P.G.A., Petersson, G.A., Nakatsuji, H.J.R.A., & Li, X. (2016). Gaussian 16 revision a. 03. 2016 (software code). Gaussian Inc. Wallingford CT.
  • Gao, S. L., Mäder, E., & Mäder, E. (2006). Jute/Polypropylene composites I. Effect of matrix modification. Composites Science and Technology, 66(7–8), 952–963. https://doi.org/10.1016/j.compscitech.2005.08.009
  • Gao, S., & Zeng, Y. (1993). Surface modification of ultrahigh molecular weight polyethylene fibers by plasma treatment. II. Mechanism of surface modification. Journal of Applied Polymer Science, 47(12), 2093–2101. https://doi.org/10.1002/app.1993.070471202
  • Grimme, S. (2004). Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry, 25(12), 1463–1473. https://doi.org/10.1002/jcc.20078
  • Haque, M. M., Hasan, M., Islam, M. S., & Ali, M. E. (2009). Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresource Technology, 100(20), 4903–4906. https://doi.org/10.1016/j.biortech.2009.04.072
  • Haque, M., Rahman, R., Islam, N., Huque, M., & Hasan, M. (2010). Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. Journal of Reinforced Plastics and Composites, 29(15), 2253–2261. https://doi.org/10.1177/0731684409343324
  • Hu, R. H., Sun, M. Y., & Lim, J. K. (2010). Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Materials & Design, 31(7), 3167–3173. https://doi.org/10.1016/j.matdes.2010.02.030
  • John, M. J., & Anandjiwala, R. D. (2008). Recent developments in chemical modification and characterization of natural fiber‐reinforced composites. Polymer Composites, 29(2), 187–207. https://doi.org/10.1002/pc.20461
  • John, M. J., & Anandjiwala, R. D. (2009). Chemical modification of flax reinforced polypropylene composites. Compos. Part a Appl. Composites Part A, Applied Science and Manufacturing, 40(4), 442–448. https://doi.org/10.1016/j.compositesa.2009.01.007
  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053
  • Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science, 49(7), 1253–1272. https://doi.org/10.1002/pen.21328
  • Kariuki, S. W., Wachira, J., Kawira, M., & Murithi, G. (2019). Formaldehyde use and alternative biobased binders for particleboard formulation: A review. Journal of Chemistry, 2019, 5256897. https://doi.org/10.1155/2019/5256897
  • Knochenmuss, R., Sinha, R. K., Balmer, F. A., Ottiger, P., & Leutwyler, S. (2020). Intermolecular dissociation energies of 1-naphthol complexes with large dispersion-energy donors: Decalins and adamantane. The Journal of Chemical Physics, 152(10), 104304. https://doi.org/10.1063/1.5144773
  • Knochenmuss, R., Sinha, R. K., & Leutwyler, S. (2018). Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen. The Journal of Chemical Physics, 148(13), 134302. https://doi.org/10.1063/1.5019432
  • Knochenmuss, R., Sinha, R. K., & Leutwyler, S. (2019). Face, Notch, or Edge? Intermolecular dissociation energies of 1-naphthol complexes with linear molecules. The Journal of Chemical Physics, 150(23), 234303. https://doi.org/10.1063/1.5100139
  • Knochenmuss, R., Sinha, R. K., & Leutwyler, S. (2020). Benchmark experimental gas-phase intermolecular dissociation energies by the SEP-R2PI method. Annual Review of Physical Chemistry, 71(1), 189–211. https://doi.org/10.1146/annurev-physchem-050317-014224
  • Knochenmuss, R., Sinha, R. K., Poblotzki, A., Den, T., & Leutwyler, S. (2018). Intermolecular dissociation energies of hydrogen-bonded 1-naphthol complexes. The Journal of Chemical Physics, 149(20), 204311. https://doi.org/10.1063/1.5055720
  • Kumar, A., & Katiyar, V. (1990). Modeling and experimental investigation of melamine-formaldehyde polymerization. Macromolecules, 23(16), 3729–3736. https://doi.org/10.1021/ma00218a003
  • Le Duigou, A., Davies, P., & Baley, C. (2013). Exploring durability of interfaces in flax fibre/epoxy micro-composites. Compos. Part a Appl. Composites Part A, Applied Science and Manufacturing, 48, 121–128. https://doi.org/10.1016/j.compositesa.2013.01.010
  • Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment, 15(1), 25–33. https://doi.org/10.1007/s10924-006-0042-3
  • Li, S., Wang, H., Chen, C., Li, X., Deng, Q., & Li, D. (2018). Mechanical, electrical, and thermal properties of highly filled bamboo charcoal/ultra‐high molecular weight polyethylene composites. Polymer Composites, 39(S3), E1858–1866. https://doi.org/10.1002/pc.24839
  • Lotfi, A., Li, H., Dao, D. V., & Prusty, G. (2021). Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials, 34(2), 238–284. https://doi.org/10.1177/0892705719844546
  • Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014–2025. https://doi.org/10.1002/app.21779
  • McKeen, L. W. (2014). The effect of temperature and other factors on plastics and elastomers (Vol. 1). Elsevier Publishing, Kidlington, Oxford OX5 1GB.
  • Merline, D. J., Vukusic, S., & Abdala, A. A. (2013). Melamine formaldehyde: Curing studies and reaction mechanism. Polymer Journal, 45(4), 413–419. https://doi.org/10.1038/pj.2012.162
  • Mohanty, A. K., Misra, M. A., & Hinrichsen, G. I. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276(1), 1–24. doi:https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1:AID-MAME1>3.0.CO;2-W
  • Mohanty, S., Verma, S. K., & Nayak, S. K. (2006). Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Composites Science and Technology, 66(3–4), 538–547. https://doi.org/10.1016/j.compscitech.2005.06.014
  • Mohanty, A. K., Wibowo, A., Misra, M., & Drzal, L. (2004). T.: Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites Part A, Applied Science and Manufacturing, 35(3), 363–370. https://doi.org/10.1016/j.compositesa.2003.09.015
  • Monteiro, S. N., Calado, V., Rodriguez, R. J. S., & Margem, F. M. (2012). Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Materials Science and Engineering A, 557, 17–28. https://doi.org/10.1016/j.msea.2012.05.109
  • Muralidhar, B. A. (2013). Study of flax hybrid preforms reinforced epoxy composites. Materials & Design, 52, 835–840. https://doi.org/10.1016/j.matdes.2013.06.020
  • Panthapulakkal, S., & Sain, M. (2007). Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—Mechanical, water absorption and thermal properties. Journal of Applied Polymer Science, 103(4), 2432–2441. https://doi.org/10.1002/app.25486
  • Park, B. D., & Jeong, H. (2010). W.: Cure kinetics of melamine–formaldehyde resin/clay/cellulose nanocomposites. Journal of Industrial and Engineering Chemistry, 16(3), 375–379. https://doi.org/10.1016/j.jiec.2010.01.035
  • Pillin, I., Kervoelen, A., Bourmaud, A., Goimard, J., Montrelay, N., & Baley, C. (2011). Could oleaginous flax fibers be used as reinforcement for polymers? Industrial Crops and Products, 34(3), 1556–1563. https://doi.org/10.1016/j.indcrop.2011.05.016
  • Poddar, P., Islam, M. S., Sultana, S., Nur, H. P., & Chowdhury, A. M. S. (2016). Mechanical and thermal properties of short arecanut leaf sheath fiber reinforced polypropyline composites: TGA, DSC and SEM analysis. Journal of Material Science & Engineering, 5(5), 0022–2169. https://doi.org/10.4172/2169-0022.1000270
  • Rajak, D. K., Pagar, D. D., Menezes, P. L., & Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. Polymers, 11(10), 1–37. https://doi.org/10.3390/polym11101667
  • Raval, D. K., Patel, A. J., & Narola, B. (2006). N.: A study on composites from casein modified melamine-formaldehyde resin. Polymer-Plastics Technology and Engineering, 45(3), 293–299. https://doi.org/10.1080/03602550500371562
  • Rezaur Rahman, M., Hasan, M., Monimul Huque, M., & Nazrul Islam, M. (2010). Physico-mechanical properties of jute fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 29(3), 445–455. https://doi.org/10.1177/0731684408098008
  • Saba, N., Jawaid, M., Hakeem, K. R., Paridah, M. T., Khalina, A., & Alothman, O. Y. (2015). Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renewable and Sustainable Energy Reviews, 42, 446–459. https://doi.org/10.1016/j.rser.2014.10.029
  • Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Compos. Part a Appl. Composites Part A, Applied Science and Manufacturing, 39(10), 1632–1637. https://doi.org/10.1016/j.compositesa.2008.07.007
  • Srivastava, S. (2017). Study of ultra-high molecular weight polyethylene/HDPE/alumina nanocomposites and their characterization. Journal Advance Resource Polymer Text Engligh, 4(1), 1–9.
  • Tam, T., & Bhatnagar, A. (2016). High-performance ballistic fibers and tapes. In Bhatnagar, A. (Ed.), Lightweight ballistic composites (2nd ed) (pp. 1–39). Woodhead Publishing Series in Computer Science and Engineering, Swaston UK. https://doi.org/10.1016/B978-0-08-100406-7.00001-5
  • Tanaka Razera, I. A., Gomes da Silva, C., Raphael de Almeida, E. V., & Frollini, E. (2014). Treatments of jute fibers aiming at improvement of fiber-phenolic matrix adhesion. Polímeros, 24(4), 417–421. https://doi.org/10.1590/0104-1428.1738
  • Ullah, S., Bustam, M. A., Nadeem, M., Naz, M. Y., Tan, W. L., & Shariff, A. M. (2014). Synthesis and thermal degradation studies of melamine formaldehyde resins. Scientific World Journal, 2014, 940502. https://doi.org/10.1155/2014/940502
  • Wibowo, A. C., Mohanty, A. K., Misra, M., & Drzal, L. (2004). T.: Chopped industrial hemp fiber reinforced cellulosic plastic biocomposites: Thermomechanical and morphological properties. Industrial & Engineering Chemistry Research, 43(16), 4883–4888. https://doi.org/10.1021/ie030873c
  • Wis, A. A., Kodal, M., Ozturk, S., & Ozkoc, G. (2020). Overmolded polylactide/jute‐mat eco‐composites: A new method to enhance the properties of natural fiber biodegradable composites. Journal of Applied Polymer Science, 137(20), 48692. https://doi.org/10.1002/app.48692
  • Xie, Y., Hill, C. A., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part a Appl. Composites Part A, Applied Science and Manufacturing, 41(7), 806–819. https://doi.org/10.1016/j.compositesa.2010.03.005
  • Yan, L., Chouw, N., & Jayaraman, K. (2014). Flax fibre and its composites–A review. Composite Part B-Eng, 56, 296–317. https://doi.org/10.1016/j.compositesb.2013.08.014
  • Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013
  • Yang, H., Yan, R., Chin, T., Liang, D. T., Chen, H., & Zheng, C. (2004). Thermogravimetric analysis− Fourier transform infrared analysis of palm oil waste pyrolysis. Energy & Fuels: An American Chemical Society Journal, 18(6), 1814–1821. https://doi.org/10.1021/ef030193m
  • Zheng, D., Ding, R. Y., Lei, Z., Xingqun, Z., & Chong-Wen, Y. (2015). Thermal properties of flax fiber scoured by different methods. Thermal Science, 19(3), 939–945. https://doi.org/10.2298/TSCI130329005Z