628
Views
1
CrossRef citations to date
0
Altmetric
Production & Manufacturing

Experimental investigation and parametric optimization of cryogenic abrasive water jet machining of nitrile rubber using Taguchi analysis

, & ORCID Icon
Article: 2219108 | Received 24 Jan 2023, Accepted 24 May 2023, Published online: 06 Jun 2023

References

  • Akgün, M., Kara, F., & Trzepieciński, T. (2021). Analysis and optimisation of cutting tool coating effects on surface roughness and cutting forces on turning of AA 6061 alloy. Advances in Materials Science and Engineering, 2021, 1–17. Article ID 6498261. https://doi.org/10.1155/2021/6498261
  • Ayed, Y., Germain, G., Melsio, A. P., Kowalewski, P., & Locufier, D. (2017). Impact of supply conditions of liquid nitrogen on tool wear and surface integrity when machining the Ti‐6Al‐4V titanium alloy. The International Journal of Advanced Manufacturing and Technology, 93(1–4), 1199–1206. https://doi.org/10.1007/s00170-017-0604-7
  • Banerjee, S. S., & Bhowmick, A. K. (2014). Experimental study on the CO2 laser cutting of novel polyamide 6/fluoroelastomer thermoplastic elastomeric blends. Rubber Chemistry and Technology, 88(1), 125–137. https://doi.org/10.5254/rct.14.85960
  • Borkowski, J., & Borkowski, P. (2009). Criteria of effective materials cutting with suspension abrasive-water jet. Archives of Civil and Mechanical Engineering, 9(2), 5–14. https://doi.org/10.1016/S1644-9665(12)60056-9
  • Campbell, F. C. (2012). Introduction and uses of lightweight materials. Light weight materials understanding basics. ASM International. https://doi.org/10.31399/asm.tb.lmub.t53550001
  • Deepak, D., & Devineni, A. (2017). Effect of process parameters on the surface roughness produced during machining of ceramics using AWSJ: An experimental investigation by Taguchi signal to noise ratio. Proceedings of the WJTA-IMCA Conference and Expo, October 25-27, New Orleans, Louisiana (pp. 1–8).
  • Devineni, A., Chincholkar, A. M., & Siddeswarappa, B. (2003). Effect of process parameters on the material removal rate on glass in low pressure abrasive slurry jet machining. Proceedings of National Conference on World Class Manufacturing, India (pp. 20–24).
  • Dhokia, V. G., Newman, S. T., Crabtree, P., & Ansell, M. P. (2011). A process control system for cryogenic CNC elastomer machining. Robotics and Computer-Integrated Manufacturing, 27(4), 779–784. https://doi.org/10.1016/j.rcim.2011.02.006
  • Gradeen, A. G., Papini, M., & Spelt, J. K. (2014). The effect of temperature on the cryogenic abrasive jet micro-machining of polytetrafluoroethylene, high carbon steel and polydimethylsiloxane. Wear, 317(1–2), 170–178. https://doi.org/10.1016/j.wear.2014.06.002
  • Haghbin, N., Ahmadzadeh, F., Spelt, J. K., & Papini, M. (2015). Effect of entrained air in abrasive water jet micro‐machining: Reduction of channel width and waviness using slurry entrainment. Wear, 344, 99–109. https://doi.org/10.1016/j.wear.2015.10.008
  • Hu, Y., Kang, Y., Wang, X.-C., Li, X. H., Long, X.-P., Zhai, G.-Y., & Huang, M. (2014). Mechanism and experimental investigation of ultra high pressure water jet on rubber cutting. International Journal of Precision Engineering and Manufacturing, 15(9), 1973–1978. https://doi.org/10.1007/s12541-014-0553-0
  • Ishfaq, K., Ahmad Mufti, N., Ahmed, N., & Pervaiz, S. (2019). Abrasive water jet cutting of cladded material: Kerf taper and MRR analysis. Materials & Manufacturing Processes, 34(5), 544–553. https://doi.org/10.1080/10426914.2018.1544710
  • Jegaraj, J. J. R., & Babu, N. R. (2005). A strategy for efficient and quality cutting of materials with abrasive water jets considering the variation in orifice and focusing nozzle diameter. International Journal of Machine Tools & Manufacture, 45(12–13), 1443–1450. https://doi.org/10.1016/j.ijmachtools.2005.01.020
  • Joel, C., & Jeyapoovan, T. (2021). Optimisation of machinability parameters in abrasive water jet machining of AA7075 using Grey-Taguchi method. Materials Today: Proceedings, 37(2), 737–741. https://doi.org/10.1016/j.matpr.2020.05.741
  • Karatas, M. A., Gokkaya, H., & Nalbant, M. (2020). Optimisation of machining parameters for abrasive water jet drilling of Carbon fibre-reinforced polymer composite material using Taguchi method. Aircraft Engineering and Aerospace Technology, 92(2), 128–138. https://doi.org/10.1108/AEAT-11-2018-0282
  • Khan, A. M., He, N., Zhao, W., Jamil, M., Xia, H., Meng, L., & Gupta, M. K. (2021). Cryogenic-LN2 and conventional emulsion assisted machining of hardened steel: Comparison from sustainability perspective. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 235(14), 2310–2322. https://doi.org/10.1177/0954405420971992
  • Khanna, N., Aggarwal, C., Pimenov, D. Y., Singla, A. K., Machado, A. R., Da Silva, L. R. R., Gupta, M. K., Sarikaya, M., & Krolczyk, G. M. (2021). Review on design and development of cryogenic machining setups for heat resistant alloys and composites. Journal of Manufacturing Processes, 68, 398–422. https://doi.org/10.1016/j.jmapro.2021.05.053
  • Khan, M. A., Soni, H., Mashinini, P. M., & Uthayakumar, M. (2021). Abrasive water jet cutting process form machining metals and composites for engineering applications: A review. Engineering Research Express, 3(2), 022004. https://doi.org/10.1088/2631-8695/abfe98
  • Kim, D. Y., Kim, G. H., Nam, G. M., Kang, D. G., & Seo, K. H. (2019). Oil resistance and low‐temperature characteristics of plasticised nitrile butadiene rubber compounds. Journal of Applied Polymer Science, 136(32), 47851. https://doi.org/10.1002/app.47851
  • Kowsari, K., Schwartzentruber, J., Spelt, J. K., & Papini, M. (2017). Erosive smoothing of abrasive slurry-jet micro-machined channels in glass, PMMA, and sintered ceramics: Experiments and roughness model. Precision Engineering, 49, 332–343. https://doi.org/10.1016/j.precisioneng.2017.03.003
  • Kumar, S., Ghoshal, S. K., Arora, P. K., & Nagdeve, L. (2020). Multi-variable optimisation in die-sinking EDM process of AISI420 stainless steel. Materials & Manufacturing Processes, 36(5), 1–11. https://doi.org/10.1080/10426914.2020.1843678
  • Kumar, P., Jain, A. K., Chaurasiya, P. K., Tiwari, D., Gopalan, A., Arockia Dhanraj, J., Solomon, J. M., Sivakumar, A., Velmurugan, K., & Fefeh Rushman, J. (2022). Sustainable machining using eco-friendly cutting fluids: A review. Advances in Materials Science and Engineering, 2022, 1–16. https://doi.org/10.1155/2022/1288623
  • Liu, S., Cui, S., Li, H., Zhou, F., Xu, B., & Hu, Y. (2022). Impact characteristics of rock breaking using a conical pick assisted with abrasive slurry jet. Engineering Fracture Mechanics, 271, 108647. https://doi.org/10.1016/j.engfracmech.2022.108647
  • Louis, H., Pude, F., Rad, C. V., & Versemann, R. (2007). Abrasive water suspension jet technology fundamentals, application and developments. Welding in the World, 51(9–10), 11–16. https://doi.org/10.1007/BF03266595
  • Lou, Y., Sun, Y., Wang, Y., Gong, Z., Liu, Z., & Zuo, D. (2019). Experimental study on cryogenic abrasive air jet machining of PDMS. Journal of Nanjing University of Aeronautics & Astronautics, 51(3), 305–311. https://doi.org/10.16356/j.1005-2615.2019.03.006
  • Mallick, P. S., Pratap, A., & Patra, K. (2022). Review on cryogenic assisted micro-machining of soft polymer: An emphasis on molecular physics, chamber design, performance analysis and sustainability. Journal of Manufacturing Processes, 80, 930–957. https://doi.org/10.1016/j.jmapro.2022.06.035
  • Mandloi, B. S., Jagadale, S., & Naskar, K. (2021). Evolving new specification and development of flexible rubber. Trans Stellar Journals, 11(4), 367–378. https://doi.org/10.24247/IJMPERDAUG202128
  • Maurya, P., Kamath, C. R., & V, G. S. (2022). Suspension-type abrasive water jet machining of slot on nitrile butadiene rubber: A preliminary study. Materials Today: Proceedings, 63, 219–225. https://doi.org/10.1016/j.matpr.2022.02.538
  • Maurya, P., Kamath, C. R., & V, G. S. (in press). Experimental investigation of suspension-type abrasive water jet machining of nitrile rubber for positive displacement motor applications. International Journal of Lightweight Materials and Manufacture. https://doi.org/10.1016/j.ijlmm.2023.03.002
  • Maurya, P., Vijay, G. S., R, K. C., & Shivamurthy, B. (2021). Cryogenic machining of elastomers: A review. Machining Science and Technology, 25(3), 477–525. https://doi.org/10.1080/10910344.2021.1903923
  • Molitoris, M., Pitel, J., Hosovsky, A., Tothova, M., & Zidek, K. (2016). A review of research on water jet with slurry injection. Procedia Engineering, 149, 333–339. https://doi.org/10.1016/j.proeng.2016.06.675
  • Nas, E., & Kara, F. (2022). Optimisation of EDM machinability of Hastelloy C22 super alloys. Machines, 10(12), 1131. https://doi.org/10.3390/machines10121131
  • Nayak, R., Shetty, R., & Shetty, S. (2012). Experimental and finite element analysis on chip formation mechanism in machining of elastomers. Bonfring International Journal of Industrial Engineering and Management Science, 2(2), 10–13. https://doi.org/10.9756/BIJIEMS.1291
  • Nouraei, H., Wodoslawsky, A., Papini, M., & Spelt, J. K. (2013). Characteristics of abrasive slurry jet micro-machining: A comparison with abrasive air jet micro-machining. Journal of Material Processing and Technology, 213(10), 1711–1724. https://doi.org/10.1016/j.jmatprotec.2013.03.024
  • Ozbek, N. A., Ozbek, O., & Kara, F. (2021). Statistical analysis of the effect of the cutting tool coating type on sustainable machining parameters. Journal of Materials Engineering and Performance, 1–13. https://doi.org/10.1007/s11665-021-06066-8
  • Pusavec, F., Courbon, C., Rech, J., Kopac, J., & Jawahir, I. S. (2014). An investigation of the effect of nitrogen phase on cryogenic machining performance and a case study on machining of INCONEL 718 alloy. ASME MSEC, 3992, 1–10. https://doi.org/10.1115/MSEC2014-3992
  • Qiang, C., Wang, F., & Guo, C. (2019). Study on impact stress of abrasive slurry jet in cutting stainless steel. International Journal of Advanced Manufacturing Technology, 100(1–4), 297–309. https://doi.org/10.1007/s00170-018-2753-8
  • Rajesh, M., Rajkumar, K., & Annamalai, V. E. (2021). Abrasive water jet machining on Ti metal-interleaved basalt-flax fibre laminate. Materials & Manufacturing Processes, 36(3), 329–340. https://doi.org/10.1080/10426914.2020.1832692
  • Ramesha, K., Santhosh, N., Kiran, K., Manjunath, N., & Naresh, H. (2019). Effect of the process parameters on machining of GFRP composites for different conditions of abrasive water suspension jet machining. Arabian Journal for Science & Engineering, 44, 7933–7943. https://doi.org/10.1007/s13369-019-03973-w
  • Senthilkumar, T. S., Muralikannan, R., & Senthil Kumar, S. (2020). Surface morphology and parametric optimisation of AWJM parameters using GRA on aluminium HMMC. Materials Today: Proceedings, 22, 410–415. https://doi.org/10.1016/j.matpr.2019.07.404
  • Sharma, R., Maurya, S., & Saini, R. (2022). A review on current research and development in abrasive water jet machining. International Journal of Engineering Research and Applications, 71(4), 4160–4169. https://www.philstat.org/index.php/MSEA/article/view/991
  • Shih, A. J., Lewis, M. A., & Strenkowski, J. S. (2004). End milling of elastomers—fixture design and tool effectiveness for material removal. Journal of Manufacturing Science and Engineering, 126(1), 115. https://doi.org/10.1115/1.1616951
  • Shih, A. J., Luo, J., Lewis, M. A., & Strenkowski, J. S. (2004). Chip morphology and forces in end milling of elastomers. Journal of Manufacturing Science and Engineering, 126(1), 124. https://doi.org/10.1115/1.1633276
  • Standard, A. (2011). Standard test methods for rubber — identification by infrared spectrophotometry. ASTM International. https://doi.org/10.1520/D3677-10R19.Copyright
  • Standard, A. (2018). Standard classification system for rubber products in automotive applications. ASTM International. https://doi.org/10.1520/D2000-18
  • Syazwani, H., Mebrahitom, G., & Azmir, A. A. (2016). Review on nozzle wear in abrasive water jet machining application. Proceedings of the IOP Conference Series: Materials Science and Engineering, Orlando, Florida, USA, 114, 012020.
  • Tamannaee, N., Spelt, J. K., & Papini, M. (2015). Abrasive slurry jet micro-machining of edges, planar areas and transitional slopes in a talc-filled co-polymer. Precision Engineering, 43, 52–62. https://doi.org/10.1016/j.precisioneng.2015.06.009
  • Teti, M., Spelt, J. K., & Papini, M. (2019). Jet properties and mixing chamber flow in a high-pressure abrasive slurry jet: Part II - machining rate and CFD modelling. International Journal of Advanced Manufacturing Technology, 101, 3021–3034. https://doi.org/10.1007/s00170-018-3041-3
  • Thangaraj, M., Ahmadein, M., Alsaleh, N. A., & Elsheikh, A. H. (2021). Optimisation of abrasive water jet machining of SiC reinforced aluminium alloy based metal matrix composites using Taguchi–DEAR technique. Materials, 14, 6250. https://doi.org/10.3390/ma14216250
  • Wang, J., & Wong, W. C. K. (1999). A study of abrasive water jet cutting of metallic coated sheet steels. International Journal of Machine Tools & Manufacture, 39(6), 855–870. https://doi.org/10.1016/S0890-6955(98)00078-9
  • Xu, X., Gao, S., Zhang, D., Niu, S., Jin, L., & Ou, Z. (2018). Mechanical behaviour of liquid nitrile rubber-modified epoxy resin: Experiments, constitutive model and application. International Journal of Mechanical Sciences, 151, 46–60. https://doi.org/10.1016/j.ijmecsci.2018.11.003
  • Yokomae, S., Takeo, Y., Shimamura, T., Senba, Y., Kishimoto, H., Ohashi, H., & Mimura, H. (2023). Abrasive slurry jet machining system using polyurethane@silica core-shell particles for internal surfaces of axisymmetric X-ray mirror. The Review of Scientific Instruments, 94(1), 015106. https://doi.org/10.1063/5.0125242
  • Zhang, G., Sun, Y., Gao, H., Liu, X., & Zuo, D. (2022a). Characteristics of cryogenic abrasive air-jet direct-write machining: A comparison with abrasive air-jet direct-write machining at oblique angles. Journal of Materials Processing Technology, 299, 117394. https://doi.org/10.1016/j.jmatprotec.2021.117394
  • Zhang, G., Sun, Y., Liu, X., Gao, H., & Zuo, D. (2022b). Experimental investigations of machining characteristics on polydimethylsiloxane (PDMS) by cryogenic abrasive air-jet machining. International Journal of Advanced Manufacturing Technology, 118, 2711–2723. https://doi.org/10.1007/s00170-021-08147-3
  • Zhang, G., Sun, Y., Liu, X., Wang, L., & Zuo, D. (2021). Prediction of erosion volume of PDMS by cryogenic micro-abrasive jet machining based on dimensional analysis method and experimental verification. International Journal of Advanced Manufacturing Technology, 114(7–8), 2447–2455. https://doi.org/10.1007/s00170-021-07020-7