916
Views
5
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Comparative characteristics assessment of calcined and uncalcined agro-based waste ash with GGBS and its application in an alkali-activated binder system

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2220483 | Received 08 Feb 2023, Accepted 29 May 2023, Published online: 13 Jun 2023

References

  • Adesina, A., de Azevedo, A. R. G., Amin, M., Hadzima-Nyarko, M., Agwa, I. S., Zeyad, A. M., & Tayeh, B. A. (2021). Fresh and mechanical properties overview of alkali-activated materials made with glass powder as precursor. Cleaner Materials, 3(November), 100036. https://doi.org/10.1016/j.clema.2021.100036
  • Akthar, M. S., Srinivasan, R., & Yashwanth, B. (2016). Zero cement concrete with upgraded properties. International Journal of Civil Engineering & Technology, 7(4), 448–19. http://iaeme.com/Home/issue/IJCIET?Volume=7&Issue=4
  • Alderete, N. (2016) Particle size distribution and specific surface area of SCM ’ s compared through experimental techniques, (August), 61–72. http://hdl.handle.net/1854/LU-8531144
  • Alla, S., & Asadi, S. S. (2022). Experimental investigation and microstructural behavior of un-calcined and calcined snail shell powder cement mortar. Journal of Building Pathology and Rehabilitation, 7(1), 1–14. https://doi.org/10.1007/s41024-022-00183-0
  • Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies Construction Materials, 15(October), e00733. https://doi.org/10.1016/j.cscm.2021.e00733
  • Anwar, N., Sappinen, T., Jalava, K., & Orkas, J. (2021, Jun). Comparative experimental study of sand and binder for flowability and casting mold quality. Advanced Powder Technology, 32(6), 1902–1910. https://doi.org/10.1016/J.APT.2021.03.040
  • Aramesh, N., Bagheri, A. R., Nguyen, T. A., & Bilal, M. (2022, Jan). Characterization techniques for nanomaterials used in nanobioremediation. Nano-Bioremediation: Fundamentals and Applications, 29–43. https://doi.org/10.1016/B978-0-12-823962-9.00018-0
  • Ardebili, H., & Pecht, M. G. (2009, Jan). Defect and failure analysis techniques for encapsulated microelectronics. Encapsulation Technologies for Electronic Applications, 287–350. https://doi.org/10.1016/B978-0-8155-1576-0.50010-3
  • Athira, V. S., Charitha, V., Athira, G., & Bahurudeen, A. (2021). Agro-waste ash based alkali-activated binder: Cleaner production of zero cement concrete for construction. Journal of Cleaner Production, 286, 125429. https://doi.org/10.1016/j.jclepro.2020.125429
  • Babu, D. L. V. (2016). Experimental study on optimization of binder content in high performance concrete. International Journal of Research in Engineering and Technology, 05(32), 319–322. https://doi.org/10.15623/ijret.2016.0532047
  • Bayraktar, O. Y., Tobbala, D. E., Turkoglu, M., Kaplan, G., & Tayeh, B. A. (2022). Hemp fiber reinforced one-part alkali-activated composites with expanded perlite: Mechanical properties, microstructure analysis and high-temperature resistance. Construction and Building Materials, 363(April), 129716. https://doi.org/10.1016/j.conbuildmat.2022.129716
  • Bernal, S. A., Juenger, M. C. G., Ke, X., Matthes, W., Lothenbach, B., Belie, N. D., & Provis, J. L. (2017). Characterization of supplementary cementitious materials by thermal analysis. Materials and Structures, 50(1), 1–13. https://doi.org/10.1617/s11527-016-0909-2
  • Bicer, A. (2020). Effect of production temperature on thermal and mechanical properties of polystyrene–fly ash composites. Advanced Composites Letters, 29, 1–8. https://doi.org/10.1177/2633366X20917988
  • Blesson, S., & Rao, A. U. (2023). Agro-industrial-based wastes as supplementary cementitious or alkali-activated binder material: A comprehensive review. Innovative Infrastructure Solutions, 8(4), 125. https://doi.org/10.1007/s41062-023-01096-8
  • Chakraborty, S., Kundu, S. P., Roy, A., Adhikari, B., & Majumder, S. B. (2013). Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial & Engineering Chemistry Research, 52(3), 1252–1260. https://doi.org/10.1021/ie300607r
  • Chancey, R. T., Stutzman, P., Juenger, M. C. G., & Fowler, D. W. (2010). Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cement and Concrete Research, 40(1), 146–156. https://doi.org/10.1016/j.cemconres.2009.08.029
  • Cheah, C. B., Tan, L. E., & Ramli, M. (2021). Recent advances in slag-based binder and chemical activators derived from industrial by-products – a review. Construction and Building Materials, 272(xxxx), 121657. https://doi.org/10.1016/j.conbuildmat.2020.121657
  • Chilukuri, S., Kumar, S., & Raut, A. (2021). Status of agro-industrial waste used to develop construction materials in andhra pradesh region – India. IOP Conference Series Materials Science Engineering, 1197(1), 012075. https://doi.org/10.1088/1757-899x/1197/1/012075
  • Claisse, P. A. (2014). Measurement of porosity as a predictor of the transport properties of concrete. Transport Properties of Concrete, 119–152. https://doi.org/10.1533/9781782423195.119
  • Coffee Waste Statistics & Coffee Cups Recycling Facts - TeaCoffee99. https://teacoffee99.com/coffee-waste-statistics-coffee-cups-recycling-facts/ (Retrieved April 6, 2023).
  • Cyriaque Kaze, R., Naghizadeh, A., Tchadjie, L., Adesina, A., Yankwa Djobo, J. N., Deutou Nemaleu, J. G., Kamseu, E., Melo, U. C., & Tayeh, B. A. (2022). Lateritic soils based geopolymer materials: A review. Construction and Building Materials, 344(February), 128157. https://doi.org/10.1016/j.conbuildmat.2022.128157
  • Deboucha, W., Leklou, N., Khelidj, A., & Oudjit, M. N. (2017). Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration. Construction and Building Materials, 146, 687–701. https://doi.org/10.1016/j.conbuildmat.2017.04.132
  • Elahi, M. M. A., Hossain, M. M., Karim, M. R., Zain, M. F. M., & Shearer, C. (2020). A review on alkali-activated binders: Materials composition and fresh properties of concrete. Construction and Building Materials, 260, 119788. https://doi.org/10.1016/j.conbuildmat.2020.119788
  • Faraj, R. H., Ahmed, H. U., Hama Ali, H. F., & Sherwani, A. F. H. (2022, Jan). Fresh and mechanical properties of concrete made with recycled plastic aggregates. Handbook Sustainable Concrete Industrial Waste Management Recycled Artificial Aggregate, Innovative Eco-Friendly Binders, Life Cycle Assessment, 167–185. https://doi.org/10.1016/B978-0-12-821730-6.00023-1
  • Fernández-Jiménez, A., de la Torre, A. G., Palomo, A., López-Olmo, G., Alonso, M. M., & Aranda, M. A. G. (2006). Quantitative determination of phases in the alkaline activation of fly ash Part II: Degree of reaction. Fuel, 85(14–15), 1960–1969. https://doi.org/10.1016/j.fuel.2006.04.006
  • Frittelli, J., “Harbor dredging: Issues and historical funding,” Congressional Research Service, pp. 1–6, 2019, [Online]. Available: https://www.whitehouse.gov/
  • Gao, X., Yu, Q. L., & Brouwers, H. J. H. (2017). Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites. Ceramics International, 43(15), 12408–12419. https://doi.org/10.1016/j.ceramint.2017.06.108
  • Garcia, E., Ejim, I. F., & Liu, H. (2022). Thermogravimetric analysis of co-combustion of a bituminous coal and coffee industry by-products. Thermochim Acta, 715(July), 179296. https://doi.org/10.1016/j.tca.2022.179296
  • Garcia-Lodeiro, I., Fernández-Jimenez, A., Pena, P., & Palomo, A. (2014, May). Alkaline activation of synthetic aluminosilicate glass. Ceramics International, 40(4), 5547–5558. https://doi.org/10.1016/J.CERAMINT.2013.10.146
  • GGBFS production to grow over the next 5 years despite no new blast furnace capacity addition.” https://www.cwgrp.com/cemweek-features/533624-ggbfs-production-to-grow-over-the-next-5-years-despite-no-new-blast-furnace-capacity-addition (Retrieved April 6, 2023).
  • Gupta, S., & Kashani, A. (2021). Utilization of biochar from unwashed peanut shell in cementitious building materials – Effect on early age properties and environmental benefits. Fuel Processing Technology, 218(April), 106841. https://doi.org/10.1016/j.fuproc.2021.106841
  • Habert, G. (2014, Jan). Assessing the environmental impact of conventional and ‘green’ cement production. Eco-Efficient Construction Building Materials Life Cycle Assessment (LCA), Eco-Labelling Case Studies, 199–238. https://doi.org/10.1533/9780857097729.2.199
  • Hossain, M. M., Karim, M. R., A Elahi, M. M., & Mohd Zain, M. F. (2019). Water absorption and sorptivity of alkali-activated ternary blended composite binder. Journal of Building Engineering, 31(August), 101370. https://doi.org/10.1016/j.jobe.2020.101690
  • Indukuri, C. S. R., Nerella, R., & Madduru, S. R. C. (2019). Effect of graphene oxide on microstructure and strengthened properties of fly ash and silica fume based cement composites. Construction and Building Materials, 229, 116863. https://doi.org/10.1016/j.conbuildmat.2019.116863
  • IS 2386 (Part I) (1963). Methods of test for aggregates for concrete, part I: Particle size and shape. (pp. 1–26). Bureau of Indian Standards. https://archive.org/details/gov.in.is.2386.1.1963
  • IS 3495 (Parts 1 to 4) (1991). Methods of tests of burnt clay building bricks (pp. 1–13). Bureau of Indian Standards. https://archive.org/details/gov.in.is.3495.1-4.1992
  • IS:383, “IS: 383, Indian standard coarse and fine aggregate for concrete- specification,” Indian Standard Coarse Fine aggregate Concrete- Specification, no. January, pp. 1–21, 2016.
  • IS 4031-11 (1988). Methods of physical tests for hydraulic cement. Bureau of Indian Standards. https://archive.org/details/gov.in.is.4031.11.1988
  • IS 4031-6 (1988). Determination of compressive strength of hydraulic cement (other than masonry cement). In Methods of physical tests for hydraulic cement (pp. 1–11). Bureau of Indian Standards. https://archive.org/details/gov.in.is.4031.6.1988
  • IS 516 (1959). Method of Tests for Strength of Concrete (pp. 1–30). Bureau of Indian Standards. https://archive.org/details/gov.in.is.516.1959/mode/2up
  • IS 516 (Part 5/Sec 1). (2018). Indian Standard hardened concrete-methods of test. Bureau of Indian Standards. https://kupdf.net/download/is-516-part-5sec1-2018_5d185706e2b6f5fa26cc919b_pdf
  • IS 8112 (2013). Indian standard specification for ordinary Portland cement, 43 grade (second revision) (pp. 1–13). Bureau of Indian Standards. https://archive.org/details/gov.in.is.8112.2013
  • Kaliyavaradhan, S. K., & Ling, T. C. (2019, Jan). Performance of concrete with PVC fibres. Use Recycled Plastics Eco-Efficient Concrete, 369–385. https://doi.org/10.1016/B978-0-08-102676-2.00017-7
  • Kamath, M., Prashant, S., & Kumar, M. (2021). Micro-characterisation of alkali activated paste with fly ash-GGBS-metakaolin binder system with ambient setting characteristics. Construction and Building Materials, 277, 122323. https://doi.org/10.1016/j.conbuildmat.2021.122323
  • Kashani, A., Provis, J. L., Qiao, G. G., & Van Deventer, J. S. J. (2014). The interrelationship between surface chemistry and rheology in alkali activated slag paste. Construction and Building Materials, 65, 583–591. https://doi.org/10.1016/j.conbuildmat.2014.04.127
  • Kathirvel, P., Gunasekaran, M., Sreekumaran, S., & Krishna, A. (2020). Effect of partial replacement of ground granulated blast furnace slag with sugarcane bagasse ash as source material in the production of geopolymer concrete. Medziagotyra, 26(4), 477–481. https://doi.org/10.5755/j01.ms.26.4.23602
  • Ke, X., Bernal, S. A., Ye, N., Provis, J. L., & Yang, J. (2015). One-part geopolymers based on thermally treated red Mud/NaOH blends. Journal of the American Ceramic Society, 98(1), 5–11. https://doi.org/10.1111/jace.13231
  • Kocaba, V., Gallucci, E., & Scrivener, K. L. (2012). Methods for determination of degree of reaction of slag in blended cement pastes. Cement and Concrete Research, 42(3), 511–525. https://doi.org/10.1016/j.cemconres.2011.11.010
  • Lima, F. S., Gomes, T. C. F., & de Moraes, J. C. B. (2021). Novel one-part alkali-activated binder produced with coffee husk ash. Materials Letters, 313(November), 131733–131735. https://doi.org/10.1016/j.matlet.2022.131733
  • Lima, F. S., Gomes, T. C. F., & Moraes, J. C. B. (2022, July). Effect of coffee husk ash as alkaline activator in one-part alkali-activated binder. Construction and Building Materials, 362, 129799. https://doi.org/10.1016/j.conbuildmat.2022.129799
  • Li, G., Tan, H., Zhang, J., Deng, X., Liu, X., & Luo, Z. (2021). Ground granulated blast-furnace slag/fly ash blends activated by sodium carbonate at ambient temperature. Construction and Building Materials, 291, 123378. https://doi.org/10.1016/j.conbuildmat.2021.123378
  • Liu, J., Doh, J. H., Ong, D. E. L., Liu, Z., & Hadi, M. N. S. (2022). Methods to evaluate and quantify the geopolymerization reactivity of waste-derived aluminosilicate precursor in alkali-activated material: A state-of-the-art review. Construction and Building Materials, 362(November), 129784. https://doi.org/10.1016/j.conbuildmat.2022.129784
  • Maldonado-Alameda, A., Giro-Paloma, J., Svobodova-Sedlackova, A., Formosa, J., & Chimenos, J. M. (2020). Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size. Journal of Cleaner Production, 242, 118443. https://doi.org/10.1016/j.jclepro.2019.118443
  • Medina, C., Sánchez, J., Del Bosque, I. F. S., Frías, M., & De Rojas, M. I. S. (2018). Meso-structural modelling in recycled aggregate concrete. New Trends Eco-Efficient Recycled Concrete, (2), 453–476. https://doi.org/10.1016/B978-0-08-102480-5.00015-4
  • Mehdipour, I., & Khayat, K. H. (2017). Effect of particle-size distribution and specific surface area of different binder systems on packing density and flow characteristics of cement paste. Cement and Concrete Composites, 78, 120–131. https://doi.org/10.1016/j.cemconcomp.2017.01.005
  • Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
  • Minhas, K. S. (2019). Effect of binder content on volumetric properties of asphalt mix. Elk Asia Pacific Journal Civil Engineering Structural Development, 5(1), 1–24. https://www.elkjournals.com/MasterAdmin/UploadFolder/Khrram/Khrram.pdf
  • Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2014). A review on the use of agriculture waste material as lightweight aggregate for reinforced concrete structural members. Advances in Materials Science and Engineering, 2014. https://doi.org/10.1155/2014/365197
  • Nanthagopalan, P., Haist, M., Santhanam, M., & Müller, H. S. (2008). Investigation on the influence of granular packing on the flow properties of cementitious suspensions. Cement and Concrete Composites, 30(9), 763–768. https://doi.org/10.1016/j.cemconcomp.2008.06.005
  • Netinger Grubeša, I., Barišić, I., Fucic, A., & Bansode, S. S. (2016, Jan). The Indian experience of steel slag application in civil engineering. Characteristics Uses Steel Slag Building Construction, 141–160. https://doi.org/10.1016/B978-0-08-100368-8.00007-5
  • Oyebisi, S., Ede, A., Olutoge, F., & Omole, D. (2020). Geopolymer concrete incorporating agro-industrial wastes: Effects on mechanical properties, microstructural behaviour and mineralogical phases. Construction and Building Materials, 256, 119390. https://doi.org/10.1016/j.conbuildmat.2020.119390
  • Oyebisi, S., Olutoge, F., Kathirvel, P., Oyaotuderekumor, I., Lawanson, D., Nwani, J., Ede, A., & Kaze, R. (2022). Sustainability assessment of geopolymer concrete synthesized by slag and corncob ash. Case Studies Construction Materials, 17(August), e01665. https://doi.org/10.1016/j.cscm.2022.e01665
  • Parthiban, K., & Saravana Raja Mohan, K. (2014). Effect of sodium hydroxide concentration and alkaline ratio on the compressive strength of slag based geopolymer concrete. International Journal of ChemTech Research, 6(4), 2446–2450. https://sphinxsai.com/2014/vol6pt4/3/(2446-2450)Jul-Aug14_.pdf
  • Parthiban, K., & Vaithianathan, S. (2015). Effect of kaolin content and alkaline concentration on the strength development of geopolymer concrete. International Journal of ChemTech Research, 8(4), 1730–1734. https://sphinxsai.com/2015/ch_vol8_no4/2/(1730-1734)V8N4.pdf
  • Poudyal, L., & Adhikari, K. (2021). Environmental sustainability in cement industry: An integrated approach for green and economical cement production. Resources, Environment and Sustainability, 4(March), 100024. https://doi.org/10.1016/j.resenv.2021.100024
  • Provis, J. L. (2022). Innovation in cements—can we meet future construction needs sustainably? CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure, 29–36. https://doi.org/10.1007/978-981-16-7160-9_2
  • Provis, J. L., Palomo, A., & Shi, C. (2015, Dec). Advances in understanding alkali-activated materials. Cement and Concrete Research, 78, 110–125. https://doi.org/10.1016/J.CEMCONRES.2015.04.013
  • Puligilla, S., & Mondal, P. (2015). Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cement and Concrete Research, 70, 39–49. https://doi.org/10.1016/j.cemconres.2015.01.006
  • Qaidi, S. M. A., Tayeh, B. A., Isleem, H. F., de Azevedo, A. R. G., Ahmed, H. U., & Emad, W. (2022). Sustainable utilization of red mud waste (bauxite residue) and slag for the production of geopolymer composites: A review. Case Studies Construction Materials, 16(February), e00994. https://doi.org/10.1016/j.cscm.2022.e00994
  • Rajagopal, R. A., Krishnaswami, V., Maruthamuthu, V., & Kandasamy, R. (2023, Jan). Functionalized carbon nanomaterials for biomedical imaging. Functionalized Carbon Nanomaterials for Theranostic Applications, 353–380. https://doi.org/10.1016/B978-0-12-824366-4.00007-8
  • Rajamane, N. P., & Jeyalakshmi, R. (2015). Formulae for sodium hydroxide solution preparation of known molar concentration for geopolymer concretes. 89, 47–53. https://www.researchgate.net/publication/285813310_Formulae_for_sodium_hydroxide_solution_preparation_of_known_molar_concentration_for_geopolymer_concretes
  • Rickard, W. D. A., Williams, R., Temuujin, J., & van Riessen, A. (2011). Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Materials Science Engineering A, 528(9), 3390–3397. https://doi.org/10.1016/j.msea.2011.01.005
  • Ríos-Parada, V., Jiménez-Quero, V. G., Valdez-Tamez, P. L., & Montes-García, P. (2017). Characterization and use of an untreated Mexican sugarcane bagasse ash as supplementary material for the preparation of ternary concretes. Construction and Building Materials, 157, 83–95. https://doi.org/10.1016/j.conbuildmat.2017.09.060
  • Sahoo, N., Kumar, A., & Samsher, S. (2022). Review on energy conservation and emission reduction approaches for cement industry. Environmental Development, 44(September), 100767. https://doi.org/10.1016/j.envdev.2022.100767
  • Singh, N. B., Kumar, M., and Rai, S., “Geopolymer cement and concrete: Properties,” Materials Today: Proceedings, vol. 29, pp. 743–748, 2019, https://doi.org/10.1016/j.matpr.2020.04.513.
  • Singh, N. B., Singh, V. D., & Rai, S. (2000). Hydration of bagasse ash-blended Portland cement. Cement and Concrete Research, 30(9), 1485–1488. https://doi.org/10.1016/S0008-8846(00)00324-0
  • Sonebi, M., Ammar, Y., & Diederich, P. (2016). Sustainability of cement, concrete and cement replacement materials in construction. Sustainability of Construction Materials, 371–396. https://doi.org/10.1016/B978-0-08-100370-1.00015-9
  • Soomro, M., Tam, V. W. Y., & Jorge Evangelista, A. C. (2023). Industrial and agro-waste materials for use in recycled concrete. Recycled Concrete, 47–117. https://doi.org/10.1016/B978-0-323-85210-4.00009-6
  • Standard, A. S. T. M.(2001). Standard Test methods for precipitated silica — surface area by single point B. American Society for Testing and Materials, 09, 1–5.
  • Syed, M., GuhaRay, A., Agarwal, S., & Kar, A. (2020). Stabilization of expansive clays by combined effects of geopolymerization and fiber reinforcement. Journal Institution Engineers Series A, 101(1), 163–178. https://doi.org/10.1007/s40030-019-00418-3
  • Tahwia, A. M., Heniegal, A. M., Abdellatief, M., Tayeh, B. A., & Elrahman, M. A. (2022). Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Studies Construction Materials, 17(June), e01393. https://doi.org/10.1016/j.cscm.2022.e01393
  • Talib, A. R. A., & Bheekhun, M. I. N. (2018, Jan). Aerogel-based thermally sprayed coatings for aero-propulsion systems: A feasibility study based on structural health monitoring approach. Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, 191–225. https://doi.org/10.1016/B978-0-08-102291-7.00010-1
  • Tantri, A., Nayak, G., Kamath, M., Shenoy, A., & Shetty, K. K. (2021). Utilization of cashew nut-shell ash as a cementitious material for the development of reclaimed asphalt pavement incorporated self compacting concrete. Construction and Building Materials, 301(May), 124197. https://doi.org/10.1016/j.conbuildmat.2021.124197
  • Tantri, A., Nayak, G., Shenoy, A., Shetty, K. K., Achar, J., & Kamath, M. (2022). Implementation assessment of calcined and uncalcined cashew nut-shell ash with total recycled concrete aggregate in self-compacting concrete employing Bailey grading technique. Innovative Infrastructure Solutions, 7(5). https://doi.org/10.1007/s41062-022-00907-8.
  • Tayeh, B. A., Hamada, H. M., Almeshal, I., & Bakar, B. H. A. (2022). Durability and mechanical properties of cement concrete comprising pozzolanic materials with alkali-activated binder: A comprehensive review. Case Studies Construction Materials, 17(August), e01429. https://doi.org/10.1016/j.cscm.2022.e01429
  • Thomas, B. S., Yang, J., Hung, K., Abdalla, J. A., Hawileh, R. A., & Ariyachandra, E. (2020, July). Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. Journal of Building Engineering, 40, 102332. https://doi.org/10.1016/j.jobe.2021.102332
  • Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials, 43, 125–130. https://doi.org/10.1016/j.conbuildmat.2013.01.023
  • Usha, S., Nair, D. G., & Vishnudas, S. (2014). Geopolymer binder from industrial wastes: A review, International Journal of Civil Engineering and Technology, 219–225. https://www.academia.edu/32759012/Geopolymer_Binder_from_Industrial_Wastes_A_Review
  • Wen, S., Liu, J., & Deng, J. (2021, Jan). Methods for the detection and composition study of fluid inclusions. Fluid Inclusion Effect in Flotation of Sulfide Minerals, 27–68. https://doi.org/10.1016/B978-0-12-819845-2.00003-X
  • Wypych, G. (2016). Physical properties of fillers and filled materials. Handbook of Fillers, 303–371. https://doi.org/10.1016/b978-1-895198-91-1.50007-5
  • Xiao, K., Xu, Y., Cao, X., Xu, H., & Li, Y. (2022, Jan). Advanced characterization of membrane surface fouling. 60 Years Loeb-Sourirajan Membrane Principles, New Materials, Modelling, Characterization, Applications, 499–532. https://doi.org/10.1016/B978-0-323-89977-2.00022-1
  • Zhang, S., Han, B., Xie, H., An, M., & Lyu, S. (2021). Brittleness of concrete under different curing conditions. Materials (Basel), 14(24). https://doi.org/10.3390/ma14247865
  • Zhou, Z., Sofi, M., Lumantarna, E., Nicolas, R. S., Kusuma, G. H., & Mendis, P. (2019). Strength development and thermogravimetric investigation of high-volume fly ash binders. Materials (Basel), 12(20). https://doi.org/10.3390/ma12203344