990
Views
2
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Estimating solar radiation using artificial neural networks: a case study of Fiche, Oromia, Ethiopia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Article: 2220489 | Received 04 Feb 2023, Accepted 29 May 2023, Published online: 05 Jun 2023

References

  • Ağbulut, Ü., Gürel, A. E., & Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable & Sustainable Energy Reviews, 135, 110114. https://doi.org/10.1016/j.rser.2020.110114
  • Ali, M., & Jamil, B. (2019). Estimating diffuse solar radiation in India: Performance characterization of generalized single-input empirical models. Urban Climate, 27, 314–13. https://doi.org/10.1016/j.uclim.2018.12.013
  • Almodfer, R., Zayed, M. E., Elaziz, M., Aboelmaaref, M. M., Mudhsh, M., & Elsheikh, A. H. (2022). Modeling of a solar-powered thermoelectric air-conditioning system using a random vector functional link network integrated with jellyfish search algorithm. Case Stud. Case Studies in Thermal Engineering, 31, 101797. https://doi.org/10.1016/j.csite.2022.101797
  • Alsaiari, A. O., Moustafa, E. B., Alhumade, H., Hani Abulkhair, H., & Elsheikh, A. (2023). A coupled artificial neural network with artificial rabbits optimizer for predicting water productivity of different designs of solar stills. Advances in Engineering Software, 175, 103315. https://doi.org/10.1016/j.advengsoft.2022.103315
  • Bae, S. K., Choi, B., Chung, H., Shin, S., Song, H. E., & Seo, J. H. (2016). Characterizing microscale aluminum composite layer properties on silicon solar cells with hybrid 3D scanning force measurements. Scientific Reports, 6(1), 1–8. https://doi.org/10.1038/srep22752
  • Bakirci, K. (2021). Prediction of diffuse radiation in solar energy applications: Turkey case study and compare with satellite data. Energy, 237, 121527. https://doi.org/10.1016/j.energy.2021.121527
  • Balidemaj, F., Isaxon, C., Abera, A., & Malmqvist, E. (2021). Indoor air pollution exposure of women in adama, Ethiopia, and assessment of disease burden attributable to the risk factor. International Journal of Environmental Research and Public Health, 18(18), 9859. https://doi.org/10.3390/ijerph18189859
  • Benchrifa, M., Essalhi, H., Tadili, R., Bargach, M. N., & Mechaqrane, A. (2019). Development of a daily databank of solar radiation components for Moroccan territory. International Journal of Photoenergy, 2019, 1–20. https://doi.org/10.1155/2019/6067539
  • Benti, N. E., Aneseyee, A. B., Asfaw, A. A., Geffe, C. A., Tiruye, G. A., & Mekonnen, Y. S. (2022). Estimation of global solar radiation using sunshine-based models in Ethiopia. Cogent Engineering, 9(1), 2114200. https://doi.org/10.1080/23311916.2022.2114200
  • Benti, N. E., Chaka, M. D., & Semie, A. G. (2023). Forecasting Renewable Energy Generation with Machine learn- ing and Deep Learning: Current Advances and Future Prospects. Sustainability, 15(9), 7087. https://doi.org/10.3390/su15097087
  • Bogale, G. G., Gelaye, K. A., Degefie, D. T., & Gelaw, Y. A. (2017). Spatial patterns of childhood diarrhea in Ethiopia: Data from Ethiopian demographic and health surveys (2000, 2005, and 2011). BMC Infectious Diseases, 17(1), 1–10. https://doi.org/10.1186/s12879-017-2504-8
  • Borunda, M., Ramírez, A., Garduno, R., Ruíz, G., Hernandez, S., & Jaramillo, O. A. (2022). Photovoltaic power generation forecasting for regional assessment using machine learning. Energies, 15(23), 8895. https://doi.org/10.3390/en15238895
  • Choudhary, A., Pandey, D., & Bhardwaj, S. (2020). Artificial neural networks based solar radiation estimation using back propagation algorithm. International Journal of Renewable Energy Research (IJRER), 10(4), 1566–1575. https://doi.org/10.20508/ijrer.v10i4.11373.g8041
  • Desalegn, B., Suleiman, H., & Asfaw, A. (2011). Household fuel use and acute respiratory infections among younger children: An exposure assessment in Shebedino Wereda, Southern Ethiopia. African Journal of Health Sciences, 18(1–2), 31–36.
  • Diez, F. J., Navas-Gracia, L. M., Chico-Santamarta, L., Correa-Guimaraes, A., & Martínez-Rodríguez, A. (2020). Prediction of horizontal daily global solar irradiation using artificial neural networks (ANNs) in the Castile and León region, Spain. Agronomy, 10(1), 96. https://doi.org/10.3390/agronomy10010096
  • Elsheikh, A. H. (2023). Applications of machine learning in friction stir welding: Prediction of joint properties, real-time control and tool failure diagnosis. Engineering Applications of Artificial Intelligence, 121, 105961. https://doi.org/10.1016/j.engappai.2023.105961
  • Elsheikh, A. H., Abd Elaziz, M., & Vendan, A. (2022). Modeling ultrasonic welding of polymers using an optimized artificial intelligence model using a gradient-based optimizer. Weld World, 66(1), 27–44. https://doi.org/10.1007/s40194-021-01197-x
  • Elsheikh, A. H., El-Said, E. M. S., Abd Elaziz, M., Manabu Fujii, H. R. E.-T., & El-Tahan, H. R. (2023). Water distillation tower: Experimental investigation, economic assessment, and performance prediction using optimized machine-learning model. Journal of Cleaner Production, 388, 135896. https://doi.org/10.1016/j.jclepro.2023.135896
  • Elsheikh, A. H., Panchal, H., Ahmadein, M., Mosleh, A. O., Sadasivuni, K. K., & Alsaleh, N. A. (2021). Productivity forecasting of solar distiller integrated with evacuated tubes and external condenser using artificial intelligence model and moth-flame optimizer. Case Studies in Thermal Engineering, 28, 101671. https://doi.org/10.1016/j.csite.2021.101671
  • Elsheikh, A. H., Shehabeldeen, T. A., Zhou, J., Showaib, E., & Abd Elaziz, M. (2021). Prediction of laser cutting parameters for polymethylmethacrylate sheets using random vector functional link network integrated with equilibrium optimizer. Journal of Intelligent Manufacturing, 32(5), 1377–1388. https://doi.org/10.1007/s10845-020-01617-7
  • Endalew, M., Belay, D. G., Tsega, N. T., Aragaw, F. M., Gashaw, M., & Asratie, M. H. (2022). Household solid fuel use and associated factors in Ethiopia: A multilevel analysis of data from 2016 Ethiopian demographic and health survey. Environmental Health Insights, 16, 11786302221095033. https://doi.org/10.1177/11786302221095033
  • Garud, K. S., Jayaraj, S., & Lee, M. Y. (2021). A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm, and hybrid models. International Journal of Energy Research, 45(1), 6–35. https://doi.org/10.1002/er.5608
  • Golam, M., Akter, R., Lee, J. M., & Kim, D. S. (2021). A long short-term memory-based solar irradiance prediction scheme using meteorological data. IEEE Geoscience & Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2021.3107139
  • Guermoui, M., Abdelaziz, R., Gairaa, K., Djemoui, L., & Benkaciali, S. (2022). New temperature-based predicting model for global solar radiation using support vector regression. International Journal of Ambient Energy, 43(1), 1397–1407. https://doi.org/10.1080/01430750.2019.1708792
  • Hoang, A. T., Nižetić, S., Ong, H. C., Tarelko, W., Le, T. H., Chau, M. Q., Nguyen, X. P., & Phuong Nguyen, X. (2021). A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustainable Energy Technologies and Assessments, 47, 101416. https://doi.org/10.1016/j.seta.2021.101416
  • Husain, S., & Khan, U. A. (2022). Development of machine learning models based on air temperature for estimation of global solar radiation in India. Environmental Progress & Sustainable Energy, 41(4), e13782. https://doi.org/10.1002/ep.13782
  • Jaber, M., Abd Hamid, A. S., Sopian, K., Fazlizan, A., & Ibrahim, A. (2022). prediction model for the performance of different PV modules using artificial neural networks. Applied Sciences, 12(7), 3349. https://doi.org/10.3390/app12073349
  • Jallal, M. A., Chabaa, S., & Zeroual, A. (2021). Half-hour global solar radiation forecasting based on static and dynamic multivariate neural networks. Journal of Engineering Research, 9(2), 203–217. https://doi.org/10.36909/jer.v9i2.8455
  • Khoshaim, A. B., Elsheikh, A. H., Moustafa, E. B., Basha, M., & Mosleh, A. O. (2021). Prediction of residual stresses in turning of pure iron using artificial intelligence-based methods. Journal of Materials Research and Technology, 11, 2181–2194. https://doi.org/10.1016/j.jmrt.2021.02.042
  • Khoshaim, A. B., Moustafa, E. B., Bafakeeh, O. T., & Elsheikh, A. H. (2021). An optimized multilayer perceptrons model using grey wolf optimizer to predict mechanical and microstructural properties of friction stir processed aluminum alloy reinforced by nanoparticles. Coatings, 11(12), 1476. https://doi.org/10.3390/coatings11121476
  • Kurniawan, A., & Harumwidiah, A. (2021). An evaluation of the artificial neural network based on the estimation of daily average global solar radiation in the city of Surabaya. Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1245. https://doi.org/10.11591/ijeecs.v22.i3.pp1245-1250
  • Markovics, D., & Mayer, M. J. (2022). Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. Renewable & Sustainable Energy Reviews, 161, 112364. https://doi.org/10.1016/j.rser.2022.112364
  • Moreira, M. O., Balestrassi, P. P., Paiva, A. P., Ribeiro, P. F., & Bonatto, B. D. (2021). Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting. Renewable & Sustainable Energy Reviews, 135, 110450. https://doi.org/10.1016/j.rser.2020.110450
  • Moustafa, E. B., & Elsheikh, A. (2023). Predicting characteristics of dissimilar laser welded polymeric joints using a multi-layer perceptrons model coupled with archimedes optimizer. Polymers (Basel), 15(1), 233. https://doi.org/10.3390/polym15010233
  • Moustafa, E. B., Hammad, A. H., & Elsheikh, A. H. (2022). Case Studies in Thermal Engineering a new optimized artificial neural network model to predict thermal efficiency and water yield of tubular solar still. Case Studies in Thermal Engineering, 30, 101750. https://doi.org/10.1016/j.csite.2021.101750
  • Mujabar, S., & Chintaginjala Venkateswara, R. (2021). Empirical models for estimating the global solar radiation of Jubail Industrial City, the Kingdom of Saudi Arabia. SN Applied Sciences, 3(1), 1–11. https://doi.org/10.1007/s42452-020-04043-9
  • NASA, World Surface Metrology, (n.d). (Retrieved November 21, 2022). http://eosweb.larc.nasa.gov/cgibin/sse/[email protected]
  • Ojo, O. S., Adeyemi, B., & Oluleye, D. O. (2021). Artificial neural network models for prediction of net radiation over a tropical region. Neural Computing & Applications, 33(12), 6865–6877. https://doi.org/10.1007/s00521-020-05463-9
  • Rodríguez Mejia, J. R., Woocay Prieto, A., Valles Chávez, A., Villela Varela, R., López Monteagudo, F. E., & Reyes Rivas, C. (2022). Estimation of solar radiation in Northwest Mexico based on the Angstrom model and polynomial regression. Ingeniería Energética, 43(1), 35–47.
  • SHeng, S. Y., Ridwan, W. M., Kumar, P., Ahmed, A. N., Fai, C. M., Birima, A. H., & El-Shafie, A. (2022). Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction. Scientific Reports, 12(1), 1–18. https://doi.org/10.1038/s41598-022-13532-3
  • Takilalte, A., Harrouni, S., & Mora, J. (2022). Forecasting global solar irradiance for various resolutions using time series models-case study: Algeria. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects, 44(1), 1–20. https://doi.org/10.1080/15567036.2019.1649756
  • Toghraie, D., Sina, N., Jolfaei, N. A., Hajian, M., & Afrand, M. (2019). Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Physica A Statistical Mechanics & Its Applications, 534, 122142. https://doi.org/10.1016/j.physa.2019.122142
  • Woldegiyorgis, T. A. (2019). Analysis of solar PV energy systems for rural villages of Nekemte Area, Oromiya Region, Ethiopia. Journal of Modern Materials, 6(1), 13–22. https://doi.org/10.21467/jmm.6.1.13-22
  • Woldegiyorgis, T. A. (2020). Prediction and comparison of daily global solar radiation using meteorological data at Lalibela, North Wollo, Ethiopia. Applied Journal of Environmental Engineering Science, 6(3), 6–3. https://doi.org/10.48422/IMIST.PRSM/ajees-v6i3.22686
  • Woldegiyorgis, T. A., Admasu, A., Benti, N. E., Asfaw, A. A., Shukla, S. K., & Shukla, S. K. (2022). A comparative evaluation of artificial neural network and sunshine based models in prediction of daily global solar radiation of Lalibela, Ethiopia. Cogent Engineering, 9(1), 1996871. https://doi.org/10.1080/23311916.2021.1996871
  • Worki, Y., Berhan, E. and Krejcar, O., 2016, September. Global solar radiation prediction using backward propagation artificial neural network for the city of Addis Ababa, Ethiopia. In International Conference on Computational Collective Intelligence (pp. 230–238). Springer, Cham.
  • World Health Organization. (2009) . Global health risks: Mortality and burden of disease attributable to selected major risks.
  • Yacef, R., Benghanem, M., & Mellit, A. (2012). Prediction of daily global solar irradiation data using Bayesian neural network: A comparative study. Renewable Energy, 48, 146–154. https://doi.org/10.1016/j.renene.2012.04.036