965
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Machine Learning Methods to Predict and Analyse Unconfined Compressive Strength of Stabilised Soft Soil with Polypropylene Columns

, , , , &
Article: 2220492 | Received 25 Jan 2023, Accepted 29 May 2023, Published online: 14 Jun 2023

References

  • Ali-Haghpanah, J. (2017). A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features.Proceedings of the 2017 Artificial Intelligence and Signal Processing Conference (AISP), Shiraz, Iran. https://doi.org/10.1109/AISP.2017.8324083
  • Artur, M. (2021). “Review the performance of the Bernoulli Naïve Bayes Classifier in Intrusion Detection Systems using Recursive Feature Elimination with Cross-validated selection of the best number of features”, Procedia computer science, 190, 564–20. https://doi.org/10.1016/j.procs.2021.06.066
  • Aslani, M., Nazariafshar, J., & Ganjian, N. (2019). “Experimental study on shear strength of cohesive soils reinforced with stone columns”, Geotechnical and Geological Engineering, 37, 2165–2188. 3 https://doi.org/10.1007/s10706-018-0752-z
  • Ayyappa, Y., Bekkanti, A., Krishna, A., Neelakanteswara, P., & Basha, C. Z. (2020, July). Enhanced and effective computerized multi layered perceptron based back propagation brain tumor detection with Gaussian filtering. Proceedings of the 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 58–62). IEEE. https://ieeexplore.ieee.org/document/9182921
  • Black, J., Sivakumar, V., & Bell, A. (2011). “The settlement performance of stone column foundations”, Géotechnique, 61(11), 909–922. https://doi.org/10.1680/geot.9.P.014
  • Chien-Chung, C. (2010). A Passive-Aggressive Algorithm for Semi-supervised Learning.Proceedings of the International Conference on Technologies and Applications of Artificial Intelligence (TAAI), Hsinchu, Taiwan. IEEE. https://ieeexplore.ieee.org/abstract/document/5695474
  • Cortes, C. & Vapnik, V. (1995). Support-vector networks. Mach Learn, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Ellis, G., Yao, C., Zhao, R., & Penumadu, D. (1995). “Stress-strain modeling of sands using artificial neural networks”, Journal of Geotechnical Engineering, 121, 429–435. 5 https://doi.org/10.1061/(ASCE)0733-9410(1995)121:5(429)
  • Guo, Q., LI, B., Chen, Y., Chen, G., & Chen, L. (2021). “Intelligent model for the compressibility prediction of cement-stabilized dredged soil based on random forest regression algorithm”, KSCE Journal of Civil Engineering, 25, 3727–3736. 10 https://doi.org/10.1007/s12205-021-2202-3
  • Guyon, I. (2000). “Linear discriminant and support vector”, Advances in Large Margin Classifiers, 9, 147.
  • Hao, J., Wang, F., Wang, X., Zhang, D., Bi, Y., Gao, Y., Zhao, X., & Zhang, Q. (2012). Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. European Journal of Pharmaceutical Sciences, 47(2), 497–505. https://doi.org/10.1016/j.ejps.2012.07.006
  • Hasan, M. (2018). “THE undrained shear strength of soft clay reinforced with group encapsulated lime bottom ash columns, International Journal of GEOMATE, 14, 46–50. 46 https://doi.org/10.21660/2018.46.45208
  • Kim, Y., Satyanaga, A., Rahardjo, H., Park, H., & Sham, A. W. L. (2021). Estimation of effective cohesion using artificial neural networks based on index soil properties: A Singapore case. Engineering Geology, 289, 106163. https://doi.org/10.1016/j.enggeo.2021.106163
  • Lamorski, K., Pachepsky, Y., Sławiński, C., & Walczak, R. (2008). “Using support vector machines to develop pedotransfer functions for water retention of soils in Poland”, Soil Science Society of America Journal, 72, 1243–1247. 5 https://doi.org/10.2136/sssaj2007.0280N
  • Lee, C.-Y., & Chern, S.-G. (2013). Application of a support vector machine for liquefaction assessment. Journal of Marine Science and Technology, 21(3), 10. https://doi.org/10.6119/JMST-012-0518-3
  • Li, Y., Rahardjo, H., Satyanaga, A., Rangarajan, S., & Lee, D. T. T. (2022). Soil database development with the application of machine learning methods in soil properties prediction. Engineering Geology, 306, 106769. https://doi.org/10.1016/j.enggeo.2022.106769
  • Mahesh, P., & Deswal, S. (2010). “Modelling pile capacity using gaussian process regression”, Computers and Geotechnics, 37, 942–947. 7–8 https://doi.org/10.1016/j.compgeo.2010.07.012
  • Majdi, A., & Rezaei, M. (2013). “Prediction of unconfined compressive strength of rock surrounding a roadway using artificial neural network”, Neural Computing & Applications, 23, 381–389. 2 https://doi.org/10.1007/s00521-012-0925-2
  • Moreira, A. (2007). Concave hull: A k-nearest neighbours approach for the computation of the region occupied by a set of points. Proceedings of the International Conference on Computer Graphics Theory and Applications, Spain. https://doi.org/10.5220/0002080800610068
  • Pal, M., & Deswal, S. (2009). M5 model tree based modelling of reference evapotranspiration, Hydrological Processes: An International Journal, 23(10), 1437–1443. https://doi.org/10.1002/hyp.7266
  • Pérez-Cruz, F., A, A.-R. J., & Giner, J. (2003). Estimating GARCH models using support vector machines*. Quantitative Finance, 3(3), 163–172. https://doi.org/10.1088/1469-7688/3/3/302
  • Robert, C. (2017). A Standardised Benchmark for Assessing the Performance of Fixed Radius Near Neighbours. Proceedings of the European Conference on Parallel Processing, France (pp. 311–321). LNEE, Springer. https://link.springer.com/chapter/10.1007/978-3-319-58943-5_25
  • Sabat, A. K. (2015). “Prediction of California bearing ratio of a stabilized expansive soil using artificial neural network and support vector machine”, Electronics Journal Geotechnical engineering, 20(3), 981–991.
  • Safavian, S. R., & Landgrebe, D. (1991). “A survey of decision tree classifier methodology”, IEEE Transactions on Systems, Man, and Cybernetics, 21, 660–674. 3 https://doi.org/10.1109/21.97458
  • Samui, P. (2008). “Support vector machine applied to settlement of shallow foundations on cohesionless soils”, Computers and Geotechnics, 35, 419–427. 3 https://doi.org/10.1016/j.compgeo.2007.06.014
  • Sathyapriya, S., Arumairaj, P., & Ranjini, D. (2017). “Prediction of unconfined compressive strength of a stabilised expansive clay soil using ANN and regression analysis (SPSS)”, Asian Journal of Research in Social Sciences and Humanities, 7, 109–123. 2 https://doi.org/10.5958/2249-7315.2017.00075.2
  • Shukla, S. K. (2022). Seven research mantras: A Short Guide for Researchers. International Journal of Geosynthetics & Ground Engineering, 8(6), 75. https://doi.org/10.1007/s40891-022-00419-6
  • Solomatine, D. P., & Dulal, K. N. (2003). “Model trees as an alternative to neural networks in rainfall—runoff modelling”, Hydrological Sciences Journal, 48, 399–411. 3 https://doi.org/10.1623/hysj.48.3.399.45291
  • Solomatine, D. P., & Y, X. U. E. (2004). “M 5 model trees and neural networks: Application to flood forecasting in the upper reach of the huai river in China”, Journal of Hydrologic Engineering, 9, 491–501. 6 https://doi.org/10.1061/(ASCE)1084-0699(2004)9:6(491)
  • Suthar, M. (2020). “Applying several machine learning approaches for prediction of unconfined compressive strength of stabilized pond ashes”, Neural Computing & Applications, 32, 9019–9028. 13 https://doi.org/10.1007/s00521-019-04411-6
  • Tharwat, A. (2017). Linear discriminant analysis: A detailed tutorial. AI Communications, 30, 169–190. https://content.iospress.com/articles/ai-communications/aic729
  • Webb, G. I., Keogh, E., & Miikkulainen, R. (2010). “Naïve Bayes”, Encyclopedia of Machine Learning, 15(1), 713–714. https://doi.org/10.1007/978-0-387-30164-8
  • Wright, R. E., Grimm, L. G., & Yarnold, P. R. (1995). Logistic regression. American Psychological Association, 217–244.
  • Xanthopoulos, P., Pardalos, P. M., & Trafalis, T. B. (2013). Linear discriminant analysis. Robust data mining, 27–33.
  • Zahmatkesh, A., & Choobbasti, A. J. (2010). “Settlement evaluation of soft clay reinforced by stone columns, considering the effect of soil compaction”, International Journal of Research and Reviews in Applied Sciences, 3(2), 159–166. https://doi.org/10.1007/s12517-010-0145-y
  • Zareapoor, M., & Shamsolmoali, P. (2015). “Application of credit card fraud detection: Based on bagging ensemble classifier”, Procedia computer science, 48, 679–685. https://doi.org/10.1016/j.procs.2015.04.201