1,015
Views
7
CrossRef citations to date
0
Altmetric
Biomedical Engineering

Wear estimation at the contact surfaces of oval shaped hip implants using finite element analysis

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Article: 2222985 | Received 07 Mar 2023, Accepted 05 Jun 2023, Published online: 15 Jun 2023

References

  • Agarwal, A. K., Pramanik, S., Kumar Agarwal, A., Rai, K. N. Chronology of total hip replacement and materials development Chronology of Total Hip Joint Replacement and Materials Development. 2005.
  • ASTM. (2015). Standard Practice for Finite Element Analysis (FEA) of non-modular metallic orthopaedic hip femoral stems 1.
  • Babaniamansour, P., Ebrahimian-Hosseinabadi, M., & Zargar-Kharazi, A. (2017). Designing an optimized novel femoral stem. Journal of Medical Signals and Sensors, 7(3), 170.
  • Bhawe, A. K., Shah, K. M., Somani, S., Shenoy B, S., Bhat N, S., Zuber, M., & K N, C. (2022). Static structural analysis of the effect of change in femoral head sizes used in total hip arthroplasty using finite element method. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2027080
  • Chen, D. W., Lee, M. S., Lin, C.-L. (2018). Finite Element Analysis of Stresses from Hip Implants with Different Head Sizes.
  • Chethan, K. N., Ogulcan, G., Zuber, M., Shenoy, S., & Shenoy b, S. (2020). Wear estimation of trapezoidal and circular shaped hip implants along with varying taper trunnion radiuses using finite element method. Computer Methods and Programs in Biomedicine, 196, 105597. https://doi.org/10.1016/j.cmpb.2020.105597
  • Chethan, K. N., Shyamasunder Bhat, N, & Satish Shenoy, B (2014). Biomechanics of hip joint: A review. International Journal of Biomedical Engineering and Technology, 15(4), 341. https://doi.org/10.1504/IJBET.2014.064824
  • Chethan, K. N., Shyamasunder Bhat, N., Zuber, M., & Satish Shenoy, B. (2021). Finite element analysis of hip implant with varying in taper neck lengths under static loading conditions. Computer Methods and Programs in Biomedicine, 208, 106273. https://doi.org/10.1016/j.cmpb.2021.106273
  • Chethan, K. N., Zuber, M., Bhat, S. N., & Shenoy, S. B. (2019). Comparative study of femur bone having different boundary conditions and bone structure using finite element method. The Open Biomedical Engineering Journal, 12(1), 115–14. https://doi.org/10.2174/1874120701812010115
  • Chethan, K. N., Zuber, M., Shyamasunder, B. N., Satish, S. B., & Shepherd, D. (2020). Optimized trapezoidal-shaped hip implant for total hip arthroplasty using finite element analysis. Cogent Engineering, 7(1), 1–18. https://doi.org/10.1080/23311916.2020.1719575
  • Chethan, B. N. S., Zuber, M., S, S. B., & Shenoy B, S. (2022). Evolution of different designs and wear studies in total hip prosthesis using finite element analysis: A review. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2027081
  • Clarke, B. (2008). Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology: CJASN, 3 Suppl 3(Supplement_3), S131–S139. https://doi.org/10.2215/CJN.04151206
  • Colic, K., & Sedmak, A. (2016). The current approach to research and design of the artificial hip prosthesis: A review. Rheumatology and Orthopedic Medicine, 1(1). https://doi.org/10.15761/ROM.1000106
  • Das, S. S., & Chakraborti, P. (2018). Development of biomaterial for total hip joint replacement. Proceedings of the IOP Conference Series: Materials Science and Engineering Sikkim, India, (Vol. 377, No. (1), pp. 012177). IOP Publishing.
  • David, E. K., Robbins, C. E., & Lavine, L. (1998). Hip Biomechanics During Gait.
  • Delikanli, Y. E., & Kayacan, M. C. (2019). Design, manufacture, and fatigue analysis of lightweight hip implants. Journal of Applied Biomaterials and Functional Materials, 17(2), 228080001983683. https://doi.org/10.1177/2280800019836830
  • Foucher, K. C. (2016). Identifying clinically meaningful benchmarks for gait improvement after total hip arthroplasty. Journal of Orthopaedic Research, 34(1), 88–96. https://doi.org/10.1002/jor.22996
  • Griza, S., Zanon, G., Silva, E. P., Bertoni, F., Reguly, A., & Strohaecker, T. R. (2009). Design aspects involved in a cemented THA stem failure case. Engineering Failure Analysis, 16(1), 512–520. https://doi.org/10.1016/j.engfailanal.2008.06.016
  • Gutmann, C., Shaikh, N., Shenoy, B. S., Shaymasunder Bhat, N., Keni, L. G., K N, & Chethan, C. (2023). Wear estimation of hip implants with varying chamfer geometry at the trunnion junction: A finite element analysis. Biomedical Physics & Engineering Express, 9(3), 035004. https://doi.org/10.1088/2057-1976/acb710
  • Hampton, S. J., Andriacchi, T. P., & Galante, J. O. (1980). Three dimensional stress analysis of the femoral stem of a total hip prosthesis. Journal of Biomechanics, 13(5), 443–448. https://doi.org/10.1016/0021-9290(80)90038-X
  • Herrmann, S., Kaehler, M., Souffrant, R., Rachholz, R., Zierath, J., Kluess, D., Mittelmeier, W., Woernle, C., & Bader, R. (2012). HiL simulation in biomechanics: A new approach for testing total joint replacements. Computer Methods and Programs in Biomedicine, 105(2), 109–119. https://doi.org/10.1016/j.cmpb.2011.07.012
  • Hodge, W. A., Fujant, R. S., Carlsont, K. L., Burgesst, R. G., Harris, W. H., Manntt, R. W. (1986). Contact pressures in the human hip joint measured in vivo (synovial joints/osteoarthritis/postsurgical rehabilitation/Joint replacement prostheses/gait analysis).
  • Hua, X., Li, J., De Pieri, E., & Ferguson, S. J. (2022). Multiscale biomechanics of the biphasic articular cartilage in the natural hip joint during routine activities. Computer Methods and Programs in Biomedicine, 215, 106606. https://doi.org/10.1016/j.cmpb.2021.106606
  • HUNG, J.-P., & JS-S, W. U. (2002). A comparative study on wear behavior of hip prosthesis by finite element simulation. Biomedical Engineering: Applications, Basis and Communications, 14(4), 139–148. https://doi.org/10.4015/S1016237202000218
  • Hu, C. Y., & Yoon, T. R. (2018). Recent updates for biomaterials used in total hip arthroplasty. Biomaterials Research, 22(1), 1–12. https://doi.org/10.1186/s40824-018-0144-8
  • Jiang, H. (2007). Static and Dynamic Mechanics Analysis on Artificial Hip Joints with Different Interface Designs by the Finite Element Method. Journal of Bionic Engineering, 4(2), 123–131. https://doi.org/10.1016/S1672-6529(07)60024-9
  • Jun, Y., & Choi, K. (2010). Design of patient-specific hip implants based on the 3D geometry of the human femur. Advances in Engineering Software, 41(4), 537–547. https://doi.org/10.1016/j.advengsoft.2009.10.016
  • Kandemir, G., Smith, S., & Joyce, T. J. (2018). The influence of contact stress on the wear of cross-linked polyethylene. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(10), 1008–1016. https://doi.org/10.1177/0954411918796047
  • Kim, J. T., & Yoo, J. J. (2016). Implant design in cementless hip arthroplasty. Hip & Pelvis, 28(2), 65. https://doi.org/10.5371/hp.2016.28.2.65
  • Koch, F. W., Koch, A. K., Amling, M., & Hahn, M. (2018). Histopathologische Befunde am Interface einer künstlichen Hüftpfanne mit einer 3D-Titannetz-Beschichtung nach einer Standzeit von 27 Jahren. Osteologie, 27(3), 165–171. https://doi.org/10.1055/s-0038-1673539
  • Korhonen, R. K., Koistinen, A., Konttinen, Y. T., Santavirta, S. S., & Lappalainen, R. (2005). The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups – finite element simulations and experimental tests. BioMedical Engineering Online, 4(1). https://doi.org/10.1186/1475-925X-4-32
  • Kottan, N., Gowtham, N. H., & Basu, B. (2022). Development and validation of a finite element model of wear in UHMWPE liner using experimental data from hip simulator studies. Journal of Biomechanical Engineering, 144(3). https://doi.org/10.1115/1.4052373
  • Lunn, D. E., Chapman, G. J., & Redmond, A. C. (2019). Hip kinematics and kinetics in total hip replacement patients stratified by age and functional capacity. Journal of Biomechanics, 87, 19–27. https://doi.org/10.1016/j.jbiomech.2019.02.002
  • Merola, M., & Affatato, S. (2019). Materials for hip prostheses: A review of wear and loading considerations. Materials, 12(3), 495. https://doi.org/10.3390/ma12030495
  • Monif, M. M. (2012). Finite element study on the predicted equivalent stresses in the artificial hip joint. Journal of Biomedical Science and Engineering, 05(2), 43–51. https://doi.org/10.4236/jbise.2012.52007
  • Morlock, M. M., Bishop, N., & Huber, G. (2011). Biomechanics of hip arthroplasty. In Tribology in Total Hip Arthroplasty (pp. 11–24). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19429-0_2
  • Pickering, S., Donnelly, B., & Crawford, R. (2009). Computerized Hip Navigation. Surgical Treatment of Hip Arthritis: Reconstruction, Replacement, and Revision, 445–455. https://doi.org/10.1016/B978-1-4160-5898-4.00060-4
  • Rixrath, E., Wendling-Mansuy, S., Flecher, X., Chabrand, P., & Argenson, J. N. (2008). Design parameters dependences on contact stress distribution in gait and jogging phases after total hip arthroplasty. Journal of Biomechanics, 41(5), 1137–1142. https://doi.org/10.1016/j.jbiomech.2007.12.009
  • Saputra, E., Anwar, I. B., Jamari, J., & Van Der Heide, E. (2013). Finite element analysis of artificial hip joint movement during human activities. Procedia Engineering, 68, 102–108. https://doi.org/10.1016/j.proeng.2013.12.154
  • Shi, B., Ajayi, O. O., Fenske, G., Erdemir, A., & Liang, H. (2003). Tribological performance of some alternative bearing materials for artificial joints. Wear, 255(7–12), 1015–1021. https://doi.org/10.1016/S0043-1648(03)00276-X
  • Shrestha, S. (2017). Wear behavior of Ti-6Al-4V for Joint Implants manufactured by Electron Beam Melting.
  • Šťastný, E., Trč, T., Handl, M., Kos, P., Kautzner, J., Philippou, T., & Lisý, J. (2014). Mid-term results of revision total hip arthroplasty using the oval-shaped uncemented Trč-Cingr cup. International Orthopaedics, 38(5), 935–940. Epub 2014 Jan 16. PMID: 24430429; PMCID: PMC3997770. https://doi.org/10.1007/s00264-013-2269-7
  • The, B., Hosman, A., Kootstra, J., Kralj-Iglic, V., Flivik, G., Verdonschot, N., & Diercks, R. (2008). Association between contact hip stress and RSA-measured wear rates in total hip arthroplasties of 31 patients. Journal of Biomechanics, 41(1), 100–105. https://doi.org/10.1016/j.jbiomech.2007.07.010
  • Wang, Q. J., & Chung, Y. (Eds.) (2013). Encyclopedia of Tribology. Springer US. https://doi.org/10.1007/978-0-387-92897-5
  • Wu, J. S., Hung, J. P., Shu, C. S., & Chen, J. H. (2003). The computer simulation of wear behavior appearing in total hip prosthesis. Computer Methods and Programs in Biomedicine, 70(1), 81–91. PMID: 12468129. https://doi.org/10.1016/s0169-2607(01)00199-7
  • Zeman, J., Ranuša, M., Vrbka, M., Gallo, J., Křupka, I., & Hartl, M. (2018). UHMWPE acetabular cup creep deformation during the run-in phase of THA’s life cycle. Journal of the Mechanical Behavior of Biomedical Materials, 87, 30–39. https://doi.org/10.1016/j.jmbbm.2018.07.015