841
Views
2
CrossRef citations to date
0
Altmetric
Materials Engineering

Influence of TiO2 nanoparticle modification on the mechanical properties of basalt-reinforced epoxy composites

, ORCID Icon, , &
Article: 2227397 | Received 28 May 2023, Accepted 15 Jun 2023, Published online: 25 Jun 2023

References

  • Abd El-Baky, M. A., Hegazy, D. A., Hassan, M. A., & Kamel, M. (2022). Potentiality of halloysite nanoclay on crashworthiness performance of polymer composite tubular elements. Journal of Composite Materials, 56(12), 1901–15. https://doi.org/10.1177/00219983221088099
  • Afolabi, L. O., et al. (2020). Syntactic foams formulations, production techniques, and industry applications: A review. Journal of Materials Research and Technology, 9(5), 10698–10718. https://doi.org/10.1016/j.jmrt.2020.07.074
  • ASTM. (2016). ASTM D2734-16, standard test methods for void content of reinforced plastics. ASTM International West Conshohocken.
  • ASTM D2344/D2344M-22. (2022). Standard test method for Short-Beam strength of polymer matrix composite materials and their laminates. ASTM International West Conshohocken. https://doi.org/10.1520/D2344_D2344M-22
  • ASTM D3039/D3039M-17. (2017). Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. https://www.astm.org/cgi-bin/resolver.cgi?D3039D3039M
  • ASTM D7264/D7264M − 21. (2021). Standard test method for flexural properties of polymer matrix composite materials. ASTM International West Conshohocken. https://doi.org/10.1520/D7264_D7264M-21
  • Begum, S., Fawzia, S., & Hashmi, M. S. J. (2020). Polymer matrix composite with natural and synthetic fibres. Advances in Materials and Processing Technologies, 6(3), 547–564. https://doi.org/10.1080/2374068X.2020.1728645
  • Brillas, E., & Garcia-Segura, S. (2023). Recent progress of applied TiO2 photoelectrocatalysis for the degradation of organic pollutants in wastewaters. Journal of Environmental Chemical Engineering, 109635(3), 109635. https://doi.org/10.1016/j.jece.2023.109635
  • Bulut, M., Bozkurt, Ö. Y., Erkliğ, A., Yaykaşlı, H., & Özbek, Ö. (2020). Mechanical and dynamic properties of basalt Fiber-Reinforced composites with nanoclay particles. Arabian Journal for Science & Engineering, 45(2), 1017–1033. https://doi.org/10.1007/s13369-019-04226-6
  • Carraro, P. A., Maragoni, L., & Quaresimin, M. (2019). Characterisation and analysis of transverse crack-induced delamination in cross-ply composite laminates under fatigue loadings. International Journal of Fatigue, 129, 105217. https://doi.org/10.1016/j.ijfatigue.2019.105217
  • Cazan, C., Enesca, A., & Andronic, L. (2021). Synergic effect of TiO 2 filler on the mechanical properties of polymer nanocomposites. Polymers, 13(12), 2017–2024. https://doi.org/10.3390/polym13122017
  • Chowdhury, I. R., Pemberton, R., & Summerscales, J. (2022). Developments and industrial applications of basalt fibre reinforced composite materials. Journal of Composites Science, 6(12), 367. https://doi.org/10.3390/jcs6120367
  • DiLandro, L., et al. (2017). Detection of voids in carbon/epoxy laminates and their influence on mechanical properties. Polymers & Polymer Composites, 25(5), 371–380. https://doi.org/10.1177/096739111702500506
  • Dou, H., et al. (2023). Effect of TiO2 on preparation condition, mechanical properties and alkali resistance of continuous basalt fibers. Cement and Concrete Composites, 136, 104861. https://doi.org/10.1016/j.cemconcomp.2022.104861
  • Eddy, D. R., et al. (2023). Heterophase polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for efficient photocatalyst: Fabrication and activity. Nanomaterials, 13(4), 704. https://doi.org/10.3390/nano13040704
  • Fu, Y., & Yao, X. (2022). A review on manufacturing defects and their detection of fiber reinforced resin matrix composites. Composites Part C Open Access, 8, 100276. https://doi.org/10.1016/j.jcomc.2022.100276
  • Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829–892. https://doi.org/10.1007/s10853-019-03990-y
  • H, M., et al. (2023). Effect of bio-fibers and inorganic fillers reinforcement on mechanical and thermal characteristics on carbon-kevlar-basalt-innegra fiber bio/synthetic epoxy hybrid composites. Journal of Materials Research and Technology, 23, 5440–5458. https://doi.org/10.1016/j.jmrt.2023.02.162
  • Hasanen, A. A., & ShyaaThedan, A. (2020). Evaluation of titanium di oxide Nano-fillers Incorporation on mechanical properties of heat cured acrylic resin. Medico Legal Update, 20(1), 292–297. https://doi.org/10.37506/mlu.v20i1.373.
  • Hiremath, A., et al. (2023). Understanding the interfacial interaction of TiO2 nanoparticles filled glass fiber/epoxy composites through dynamic mechanical analysis. Composite Interfaces, 30(7), 787–802. https://doi.org/10.1080/09276440.2023.2176058
  • Hiremath, A., Murthy, A. A., Thipperudrappa, S., KN, B., & Jones, I. P. (2021). Nanoparticles filled polymer nanocomposites: A technological review. Cogent Engineering, 8(1), 1991229. https://doi.org/10.1080/23311916.2021.1991229
  • Hiremath, A., Thipperudrappa, S., & Bhat, R. (2022). Surface morphology analysis using atomic force microscopy and statistical method for glass fiber reinforced Epoxy-Zinc oxide nanocomposites. EngineerindScience, 18, 308–319. https://doi.org/10.30919/es8d702
  • Ilhamdi, I., Nugroho, A., Hidayat, D. & Visra, F. (2022). Physical and mechanicals characteristic of the nano particulate TiO2-lycal composite produced with open moulding. Proceedings of the AIP Conference, 2545, 20010.
  • Jain, N., Verma, A., & Singh, V. K. (2019). Dynamic mechanical analysis and creep-recovery behaviour of polyvinyl alcohol based cross-linked biocomposite reinforced with basalt fiber. Materials Research Express, 6(10), 105373. https://doi.org/10.1088/2053-1591/ab4332
  • Joshi, S., Hiremath, A., Nayak, S. Y., Jaideep, J. P., & Thipperudrappa, S. (2022). Hybridization effect on the mechanical properties of basalt fiber reinforced ZnO modified epoxy composites. Polymer Composites, 43(8), 5704–5714. https://doi.org/10.1002/pc.26889
  • Karthick, L., et al. (2022). Influence of nano-/microfiller addition on mechanical and morphological performance of kenaf/glass fibre-reinforced hybrid composites. Journal of Nanomaterials, 2022, 9778224. https://doi.org/10.1155/2022/9778224
  • Khandelwal, S., & Rhee, K. Y. (2020). Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Composites Part B Engineering, 192, 108011. https://doi.org/10.1016/j.compositesb.2020.108011
  • Kim, Y., et al. (2022). Wetting properties and morphological behavior of core-shell polymer-based nanoparticle coatings. Progress in Organic Coatings, 163, 106606. https://doi.org/10.1016/j.porgcoat.2021.106606
  • Kim, D.-C., Choi, J. S., Shin, H.-S., Jung, I., & Heo, Y. W. (2023). Effect of the subsidiary materials of the manufacturing process on the microstructure of the composite laminate. Polymer Composites, 44(2), 1108–1115. https://doi.org/10.1002/pc.27157
  • Kishore, M., Amrita, M., & Kamesh, B. (2021). Tribological properties of basalt-jute hybrid composite with graphene as nanofiller. Materials Today: Proceedings, 43, 244–249. https://doi.org/10.1016/j.matpr.2020.11.654
  • Kumar, R., Haq, M. I. U., Raina, A., & Anand, A. (2019). Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities. International Journal of Sustainable Engineering, 12(3), 212–220. https://doi.org/10.1080/19397038.2018.1538267
  • Li, Y., et al. (2022). A review on durability of basalt fiber reinforced concrete. Composites Science and Technology, 225, 109519. https://doi.org/10.1016/j.compscitech.2022.109519
  • Lokesh Yadhav, B. R., Govindaraju, H. K., Kiran, M. D. & Suresha, B. 2020 Three-point bending and impact behaviour of carbon/epoxy composites modified with titanium dioxide nanoparticles. Proceedings of the Materials Today, Chennai, India 43, 1755–1761. Elsevier.
  • Mahato, K. K., Dutta, K., & Ray, B. C. (2019). Assessment of mechanical, thermal and morphological behavior of nano-Al2O3 embedded glass fiber/epoxy composites at in-situ elevated temperatures. Composites Part B Engineering, 166, 688–700. https://doi.org/10.1016/j.compositesb.2019.03.009
  • Mishra, R., Tiwari, R., Marsalkova, M., Behera, B. K., & Militky, J. (2012). Effect of TiO2 nanoparticles on basalt/polysiloxane composites: Mechanical and thermal characterization. The Journal of the Textile Institute, 103(12), 1361–1368. https://doi.org/10.1080/00405000.2012.685270
  • Mohit, H., et al. (2021). Nanoparticles addition in Coir‐Basalt‐Innegra fibers reinforced Bio-synthetic epoxy composites. Journal of Polymers and the Environment, 29(11), 3561–3573. https://doi.org/10.1007/s10924-021-02133-2
  • Natrayan, L., et al. (2022). Effect of nano TiO2 filler addition on mechanical properties of Bamboo/Polyester hybrid composites and parameters optimized using grey Taguchi method. Adsorption Science & Technology, 2022, 6768900. https://doi.org/10.1155/2022/6768900
  • Nayak, S. Y., et al. (2020). Influence of fabric orientation and compression factor on the mechanical properties of 3D E-glass reinforced epoxy composites. Journal of Materials Research and Technology, 9(4), 8517–8527. https://doi.org/10.1016/j.jmrt.2020.05.111
  • Nunzi, F., & De Angelis, F. (2022). Modeling titanium dioxide nanostructures for photocatalysis and photovoltaics. Chemical Science, 13(33), 9485–9497. https://doi.org/10.1039/D2SC02872G
  • Othman, F. E. C., & Hassan, S. A. (2023). Hybrid biocomposites combining synthetic nanofillers and natural fibers in composite structures. Synthetic Natural Nanofillers Polymer Composite, 259–272. https://doi.org/10.1016/B978-0-443-19053-7.00011-1
  • Prasad, V., Sekar, K., & Joseph, M. A. (2021). Mechanical and water absorption properties of nano TiO2 coated flax fibre epoxy composites. Construction and Building Materials, 284, 122803. https://doi.org/10.1016/j.conbuildmat.2021.122803
  • Priya, S. P., & Rai, S. K. (2005). Impact, compression, density, void content, and weight reduction studies on waste silk fabric/epoxy composites. Journal of Reinforced Plastics & Composites, 24(15), 1605–1610. https://doi.org/10.1177/0731684405050401
  • Rastogi, S., Verma, A., & Singh, V. K. (2020). Experimental response of nonwoven waste cellulose fabric–reinforced epoxy composites for high toughness and coating applications. Materials Performance and Characterization, 9(1), 151–172. https://doi.org/10.1520/MPC20190251
  • Rova, L., Kurita, H., Kudo, S., Hatayama, S., Kanno, T., Gallet--Pandellé, A., & Narita, F. (2023). Variation of the tensile properties of basalt-fiber-reinforced polybutylene succinate matrix composites during microbial degradation. Polymers (Basel), 15(7), 1796. https://doi.org/10.3390/polym15071796
  • Roy, J. (2022). The synthesis and applications of TiO2 nanoparticles derived from phytochemical sources. Journal of Industrial & Engineering Chemistry, 106, 1–19. https://doi.org/10.1016/j.jiec.2021.10.024
  • Saravanan, S., Parkunam, N., Navaneethakrishnan, G., Karthikeyan, K., & Jaya Suthahar, S. T. (2020). Development of basalt based nanoparticles reinforced composites. IOP Conference Series: Materials Science & Engineering, 923(1), 012052. https://doi.org/10.1088/1757-899X/923/1/012052
  • Sharma, K. K., Kushwaha, J., Kumar, K., Singh, H., & Shrivastava, Y. (2022). Fabrication and testing of hybrid fibre reinforced composite: A comprehensive review. Australian Journal of Mechanical Engineering, 1–17. https://doi.org/10.1080/14484846.2021.2022581
  • Shehab, E., Meiirbekov, A., Amantayeva, A., & Tokbolat, S. (2023). Cost modelling for recycling fiber-reinforced composites: State-of-the-art and future research. Polymers (Basel), 15(1), 150. https://doi.org/10.3390/polym15010150
  • Shen, J., Lin, X., Liu, J., & Li, X. (2020). Revisiting stress–strain behavior and mechanical reinforcement of polymer nanocomposites from molecular dynamics simulations. Physical Chemistry Chemical Physics: PCCP, 22(29), 16760–16771. https://doi.org/10.1039/D0CP02225J
  • Singh, S. K., Singh, D., Kumar, A., & Jain, A. (2019). An analysis of mechanical and viscoelastic behaviour of Nano-SiO 2 dispersed epoxy composites. Silicon, 12(10), 2465–2477. https://doi.org/10.1007/s12633-019-00335-x
  • Tamás-Bényei, P., & Sántha, P. (2023). Potential applications of basalt fibre composites in thermal shielding. Journal of Thermal Analysis and Calorimetry, 148(2), 271–279. https://doi.org/10.1007/s10973-022-11799-2
  • Thipperudrappa, S., Hiremath, A., & Kurki Nagaraj, B. (2021). Synergistic effect of ZnO and TiO2 nanoparticles on the thermal stability and mechanical properties of glass fiber-reinforced LY556 epoxy composites. Polymer Composites, 42(9), 4831–4844. https://doi.org/10.1002/pc.26193
  • Thipperudrappa, S., Kini, A. U., Hiremath, A., & Kumar, K. D. (2019). Surface topographical studies of glass fiber reinforced epoxy-ZnO nanocomposites. Materials Research Express, 7(1), 15304. https://doi.org/10.1088/2053-1591/ab57da
  • Thipperudrappa, S., Ullal Kini, A., & Hiremath, A. (2019). Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber-reinforced epoxy nanocomposites. Polymer Composites, 41(1), 174–181. https://doi.org/10.1002/pc.25357
  • Tretiak, I., Kawashita, L. F., & Hallett, S. R. (2023). Manufacturing composite laminates with controlled void content through process control. Journal Reinforced Plastics Composites, 07316844231154585. https://doi.org/10.1177/07316844231154585
  • Tripathy, P., & Biswas, S. (2022a). Mechanical and thermal properties of basalt fiber reinforced epoxy composites modified with CaCO3 nanoparticles. Polymer Composites, 43(11), 7789–7803. https://doi.org/10.1002/pc.26883
  • Tripathy, P., & Biswas, S. (2022b). Mechanical and thermal properties of mineral fiber based polymeric nanocomposites: A review. Polymer-Plastics Technology & Materials, 61(13), 1385–1410. https://doi.org/10.1080/25740881.2022.2061996
  • Verma, A., Budiyal, L., Sanjay, M. R., & Siengchin, S. (2019). Processing and characterization analysis of pyrolyzed oil rubber (from waste tires)-epoxy polymer blend composite for lightweight structures and coatings applications. Polymer Engineering & Science, 59(10), 2041–2051. https://doi.org/10.1002/pen.25204
  • Verma, A., Negi, P., & Singh, V. K. (2019). Experimental analysis on carbon residuum transformed epoxy resin: Chicken feather fiber hybrid composite. Polymer Composites, 40(7), 2690–2699. https://doi.org/10.1002/pc.25067
  • Verma, A., & Singh, V. K. (2018). Mechanical, microstructural and thermal characterization of epoxy-based human hair–reinforced composites. Journal of Testing and Evaluation, 47(2), 20170063–20171215. https://doi.org/10.1520/JTE20170063
  • Vidakis, N., et al. (2021). Optimization of the filler concentration on fused filament fabrication 3d printed polypropylene with titanium dioxide nanocomposites. Materials (Basel), 14(11), 3076. https://doi.org/10.3390/ma14113076
  • Vidakis, N., Petousis, M., Maniadi, A., Papadakis, V., & Manousaki, A. (2022). MEX 3D printed HDPE/TiO2 nanocomposites physical and mechanical properties investigation. Journal of Composites Science, 6(7), 209. https://doi.org/10.3390/jcs6070209
  • Vinay, S. S., Sanjay, M. R., Siengchin, S., & Venkatesh, C. V. (2022). Basalt fiber reinforced polymer composites filled with nano fillers: A short review. Materials Today: Proceedings, 52, 2460–2466. https://doi.org/10.1016/j.matpr.2021.10.430
  • Wang, F., et al. (2023). Surface sizing introducing carbon nanotubes for interfacial bond strengthening of basalt fiber–reinforced polymer composites. Advanced Composites and Hybrid Materials, 6(3), 117. https://doi.org/10.1007/s42114-023-00695-4
  • Wang, T., Zhang, Y., Chen, M., Gu, M., & Wu, L. (2022). Scalable and waterborne titanium-dioxide-free thermochromic coatings for self-adaptive passive radiative cooling and heating. Cell Reports Physical Science, 3(3), 100782. https://doi.org/10.1016/j.xcrp.2022.100782
  • Weyhrich, C. W., Petrova, S. P., Edgar, K. J., & Long, T. E. (2023). Renewed interest in biopolymer composites: Incorporation of renewable, plant-sourced fibers. Green Chemistry: An International Journal and Green Chemistry Resource: GC, 25(1), 106–129. https://doi.org/10.1039/D2GC03384D
  • Xing, D., et al. (2023). Thermoelectric performance of basalt fiber with nanocomposite sizing. Colloids and Surfaces A Physicochemical and Engineering Aspects, 672, 131761. https://doi.org/10.1016/j.colsurfa.2023.131761
  • Xu, N., et al. (2022). A hybrid 1D/2D coating strategy with MXene and CNT towards the interfacial reinforcement of carbon fiber/poly (ether ether ketone) composite. Composites Part B: Engineering, 246, 110278. https://doi.org/10.1016/j.compositesb.2022.110278
  • Yadav, V., & Singh, S. (2022). A comprehensive review of natural fiber composites: Applications, processing techniques and properties. Materials Today: Proceedings, 56, 2537–2542. https://doi.org/10.1016/j.matpr.2021.09.009
  • Zapata-Tello, D. L., Escobar-Barrios, V., Gonzalez-Calderon, J. A., & Pérez, E. (2020). Chemical modification of titanium dioxide nanoparticles with dicarboxylic acids to mediate the UV degradation in polyethylene films. Polymer Bulletin, 77(12), 6409–6431. https://doi.org/10.1007/s00289-019-03066-6
  • Zhang, M., Zhang, K., Zhang, X., Yang, C. & Yuen, M. M.-F. (2012). Transparent functionalized zinc oxide/epoxy nanocomposite with high thermal performance for high-power light-emitting diodes. Proceedings of the 2012 14th International Conference on Electronic Materials and Packaging (EMAP), Lantau Island, Hong Kong (pp. 1–6).
  • Zheng, Y., Zhuo, J., & Zhang, P. (2021). A review on durability of nano-SiO2 and basalt fiber modified recycled aggregate concrete. Construction and Building Materials, 304, 124659. https://doi.org/10.1016/j.conbuildmat.2021.124659