1,594
Views
1
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

A comprehensive review on photocatalytic degradation of organic pollutants and microbial inactivation using Ag/AgVO3 with metal ferrites based on magnetic nanocomposites

, &
Article: 2228069 | Received 10 Jan 2023, Accepted 29 May 2023, Published online: 06 Jul 2023

References

  • Abazari, R., & Mahjoub, A. R. (2017). Potential applications of magnetic β-AgVO3/ZnFe2O4 nanocomposites in dyes, photocatalytic degradation, and catalytic thermal decomposition of ammonium perchlorate. Industrial & Engineering Chemistry Research, 56(3), 623–27. https://doi.org/10.1021/acs.iecr.6b03727
  • Ahmed Al-Lhaibi, S., & Mazin Al-Shabander, B. (2022 Dec. 1[cited. 2023 Mar. 18]). Photocatalytic activity and wettability properties of ZnO/Sawdust/Epoxy Composites. Iraqi Journal of Physics, 20(4),54–65. Available from https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/105https://doi.org/10.30723/ijp.v20i4.1051
  • Ajormal, F., Moradnia, F., Taghavi Fardood, S., & Ramazani, A. (2020). Zinc ferrite nanoparticles in photo-degradation of dye: Mini-review. Journal of Chemical Reviews, 2(2), 90–102. https://doi.org/10.33945/SAMI/JCR.2020.2.2
  • Aksoy, M., Yanalak, G., Aslan, E., Patir, I. H., & Metin, Ӧ. (2020). Visible light-driven hydrogen evolution by using mesoporous carbon nitride-metal ferrite (MFe2O4/mpg-CN; M: Mn, Fe, Co and Ni) nanocomposites as catalysts. International Journal of Hydrogen Energy, 45(33), 16509–16518. https://doi.org/10.1016/j.ijhydene.2020.04.111
  • Al-Alawy, A. F., Al-Abodi, E. E., & Kadhim, R. M. (2018). Synthesis and characterization of magnetic iron oxide nanoparticles by co-precipitation method at different conditions. Journal of Engineering, 24(10), 60–72. https://doi.org/10.31026/j.eng.2018.10.05
  • Al-Husseiny, R. A. & Ebrahim, S. E. (2021). Synthesis of geopolymer for the removal of hazardous waste: a review. Proceedings of the IOP Conference Series: Earth and Environmental Science, 779(1), 012102. https://doi.org/10.1088/1755-1315/779/1/012102
  • Ali, N., Zada, A., Zahid, M., Ismail, A., Rafiq, M., Riaz, A., & Khan, A. (2018). Enhanced photodegradation of methylene blue with alkaline and transition‐metal ferrite nanophotocatalysts under direct sun light irradiation. Journal of the Chinese Chemical Society, 66(4), 402–408. https://doi.org/10.1002/jccs.201800213
  • Alkurdy, F., & Ebrahim, S. (2020). Comparison between commercial and synthesized Fe3O4 nanoparticles for removal of heavy metal contaminants in wastewater. Association of Arab Universities Journal of Engineering Sciences, 27(1), 30–43. https://doi.org/10.33261/jaaru.2019.27.1.004
  • Al-Mahmoud, S. M. (2019). Adsorption of some aliphatic dicarboxylic acids on Zinc Oxide: A kinetic and thermodynamic study. Baghdad Science Journal, 16(4), 0892. [Internet] Available from https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4504
  • Alshabander, B., & Bassim Abd-Alkader, M. (2023). Photocatalytic degradation of methyl blue by TiO2 nanoparticles incorporated in cement. Iraqi Journal of Physics, 21(1), 10–12. [Internet] Available from https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1042
  • Anchieta, C. G., Cancelier, A., Mazutti, M. A., Jahn, S. L., Kuhn, R. C., Gündel, A., Chiavone-Filho, O., & Foletto, E. L. (2014). Effects of solvent diols on the synthesis of ZnFe₂O₄ particles and their use as heterogeneous photo-Fenton catalysts. Materials (Basel), 7(9), 6281–6290. 2014 Sep 3. PMID: 28788191; PMCID: PMC5456135. https://doi.org/10.3390/ma7096281
  • Aparna, M. L., Grace, A. N., Sathyanarayanan, P., & Sahu, N. K. (2018). A comparative study on the supercapacitive behaviour of solvothermally prepared metal ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) nanoassemblies. Journal of Alloys and Compounds, 745, 385–395. https://doi.org/10.1016/j.jallcom.2018.02.127
  • Azzaz, A. A., Jellali, S., Hamed, N. B. H., El Jery, A., Khezami, L., Assadi, A. A., & Amrane, A. (2021). Photocatalytic treatment of wastewater containing simultaneous organic and inorganic pollution: Competition and operating parameters effects. Catalysts, 11(7), 855. https://doi.org/10.3390/catal11070855
  • Baqi Ahmed, A., & Hind Ebrahim Shahlaa, E. (2020). Removal of methylene blue and Congo red dyes by pre-treated fungus biomass – equilibrium and kinetic studies. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66(2), 84–100. ( Malaysia)
  • Bayantong, A. R. B., Shih, Y. J., Ong, D. C., Abarca, R. R. M., Dong, C. D., & de Luna, M. D. G. (2021). Adsorptive removal of dye in wastewater by metal ferrite-enabled graphene oxide nanocomposites. Chemosphere, 274, 129–518. https://doi.org/10.1016/j.chemosphere.2020.129518
  • Boris, I. K., Rasika Dias, H. V., & Oxana, V. K. (2019). Mini-review: Ferrite nanoparticles in the catalysis. Arabian Journal Chemistry, 12(7), 1234–1246. https://doi.org/10.1016/j.arabjc.2014.10.049
  • Chen, Y., Liang, Y., Li, T., Lin, C., Lin, L., Zhao, M., Wang, Y., Chen, H., Zeng, J., & Zhang, Y. (2019). Hydrothermal fabrication of sandwich-structured Silver sulfide/ferroferric oxide/silver metavanadate graphene microtube using capillary effect for enhancing photocatalytic degradation and disinfection. Journal of Colloid and Interface Science, 555, 759–776. ISSN 0021-9797. https://doi.org/10.1016/j.jcis.2019.08.026
  • Chen, Y., Liang, Y., Zhao, M., Wang, Y., Zhang, L., Jiang, Y., Wang, G., Zou, P., Zeng, J., Zhang, & Yunsong, Y. (2019). In Situ Ion exchange synthesis of Ag 2 S/AgVO 3 graphene aerogels for enhancing photocatalytic antifouling efficiency. Engineering Chemistry Research, 58(8), 3538–3548. https://doi.org/10.1021/acs.iecr.8b05962
  • Chen, D., Li, B., Pu, Q., Chen, X., Wen, G., & Li, Z. (2019). Preparation of Ag-AgVO3/g-C3N4 composite photo-catalyst and degradation characteristics of antibiotics. Journal of Hazardous Materials, 373, 303–312. https://doi.org/10.1016/j.jhazmat.2019.03.090
  • Cuong, N. D., Trang, N. H., Ha, T. T. V., Viet, N. M., Phuong, N. M., & Cuong, N. D. (2021). Synthesis, characterization, and photocatalytic activity of g-C3N4/GaN-ZnO composite. Journal of Nanomaterials, 2021, 1–9. https://doi.org/10.1155/2021/8871067
  • Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., Xiaoxiao, H., & Yan, H. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146. ISSN 0043-1354. https://doi.org/10.1016/j.watres.2015.04.038
  • Dumitru, V., Negrea, S., Pacurariu, C., Surdu, A., Ianculescu, A., Pop, A., & Manea, F. (2021). CuBi2O4 synthesis, characterization, and application in sensitive amperometry/voltammetric detection of amoxicillin in aqueous solutions. Nanomaterials, 11(3), 740. https://doi.org/10.3390/nano11030740
  • Duong, H. D. T., Nguyen, D. T., & Kim, K.-S. (2021). Effects of process variables on properties of CoFe2O4 nanoparticles prepared by solvothermal process. Nanomaterials, 11(11), 3056. https://doi.org/10.3390/nano11113056
  • Dutta, S. K., Akhter, M., Ahmed, J., Amin, M. K. & Dhar, P. K. (2021). Synthesis and catalytic activity of spinel ferrites: A brief review. Biointerface Research in Applied Chemistry, 12, 4399.
  • Ebrahim Shahlaa, E. (2019a). Biomineralization on based remediation on of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil. Environmental Technology & Innovation/USA.
  • Ebrahim Shahlaa, E. (2019b). Isolation and identification of ureolytic bacteria isolated from livestock soil to improve the strength of cement mortar. Journal of University of Technology.
  • Ebrahim Shahlaa, E. (2020a). Comparison between commercial and synthesized Fe3O4 nanoparticles for removal of heavy metal contaminants in wastewater. Journal of Engineering Science of the Society of Engineering Colleges, 27(1), 2020. https://doi.org/10.33261/jaaru.2019.27.1.004
  • Ebrahim Shahlaa, E. (2020b). Removal of methylene blue and congo red dyes by pre-treated fungus biomass – equilibrium and kinetic studies. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66(2), 84–100/Malaysia.
  • Ebrahim Shahlaa, E., Alsaade, H., & Saja. (2019). Competitive adsorption of Cd (II) and Zn (II) in single and binary systems from aqueous solutions onto cork stopper particles. Journal of Engineering Science of the Society of Engineering Colleges, 26(1), 17–27. https://doi.org/10.33261/jaaru.2019.26.1.003
  • Faraji, A., Mehrdadi, N., Mohammad Mahmoodi, N., Baghdadi, M., & Pardakhti, A. (2021). Enhanced photocatalytic activity by synergic action of ZIF-8 and NiFe2O4 under visible light irradiation. Journal of Molecular Structure, 1223, 129028. https://doi.org/10.1016/j.molstruc.2020.129028
  • Farhan, A. M., Zaghair, A. M., & Abdullah, H. I. (2022). Adsorption study of rhodamine –B Dye on Plant (Citrus Leaves). Baghdad Science Journal [Internet], 19(4), 0838. Available from https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6133
  • Fatima, N., Tanveer, M., Nawaz, T., Tahir, M. B., Sagir, M., Rafique, M., Assiri, M. A., Imran, M., Alzaid, M., & Alrobei, H. (2022). Synthesis of ZnO/Ag/phosphorene for photocatalytic reduction of hexavalent chromium (Cr-VI). Applied Nanoscience, 12(8), 2379–2387. https://doi.org/10.1007/s13204-022-02509-3
  • Gao, L., Zhonghua, L., & Liu, J. (2017). Facile synthesis of Ag3VO4/β-AgVO3 nanowires with efficient visible-light photocatalytic activity. RSC Advances, 7(44), 27515–2752144. https://doi.org/10.1039/C7RA03955G
  • Gupta, N. K., Ghaffari, Y., Kim, S., Bae, J., Kim, K S., & Saifuddin, Md. (2020). Photocatalytic degradation of organic pollutants over MFe2O4 (M = co, Ni, Cu, Zn) Nanoparticles at Neutral pH. Scientific Reports, 10(1), 4942. https://doi.org/10.1038/s41598-020-61930-2
  • Jabbar, H., Ammar, Zaid, S., Ammar, S. H., & Ebrahim, S. (2021). Enhanced visible-light photocatalytic bacterial inhibition using recyclable magnetic heterogeneous nanocomposites (Fe3O4@SiO2@Ag2WO4@Ag2S) in core/shell structure. Environmental Nanotechnology, Monitoring, & Management, 16, 100601. https://doi.org/10.1016/j.enmm.2021.100601
  • Jabbar, Z. H., & Ebrahim, S. E. (2022). Recent advances in nano-semiconductors photocatalysis for degrading organic contaminants and microbial disinfection in wastewater: A comprehensive review. Environmental Nanotechnology, Monitoring, & Management, 17. ISSN 2215-1532. https://doi.org/10.1016/j.enmm.2022.100666
  • Jabbar, H., Ebrahim, Zaid, S. E., & Ebrahim, S. (2021). Synthesis, characterization, and photocatalytic degradation activity of core/shell magnetic nanocomposites (Fe3O4@SiO2@Ag2WO4@Ag2S) under visible light irradiation. Optical Materials, 122, 122. https://doi.org/10.1016/j.optmat.2021.111818
  • Jamil, A. (2021). Cu2+ doped nickel spinel ferrites (CuxNi1−xFe2O4) nanoparticles loaded on CNTs for degradation of crystal violet dye and antibacterial activity studies. Journal of Taibah University for Science, 15(1), 814–825. https://doi.org/10.1080/16583655.2021.2005911
  • Jeseentharani, V., Mary George, B., Dayalan, J. A., Nagaraja, K. S., & Nagaraja, K. S. (2013). Synthesis of metal ferrite (MFe 2 O 4 M = Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials. Journal of Experimental Nanoscience, 8(3), 358–370. https://doi.org/10.1080/17458080.2012.690893
  • Jing, L., Xu, Y., Huang, S., Xie, M., He, M., Xu, H., Li, H., & Zhang, Q. (2016). Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: Highly efficient visible light photocatalytic and antibacterial activity. Applied Catalysis B-Environmental, 199, 11–22. https://doi.org/10.1016/j.apcatb.2016.05.049
  • Karnaji, & Nurhasanah, I. (2017). Photodegradation of Rhodamine B by using ZnFe2O4 nanoparticles synthesized through precipitation method. Proceedings of the IOP Conference Series: Materials Science and Engineering, 202(1), 012044. IOP Publishing.
  • Kefeni, K. K., & Mamba, B. B. (2020). Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review. Sustainable Materials and Technologies, 23, e00140–. https://doi.org/10.1016/j.susmat.2019.e00140
  • Kelebogile Mmelesi, O., Masunga, N., Kuvarega, A., Nkambule, T. T., Mamba, B. B., & Kefeni, K. K. (2021). Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Materials Science in Semiconductor Processing, 123, 105–523. https://doi.org/10.1016/j.mssp.2020.105523
  • Kokkinos, P., Mantzavinos, D., & Venieri, D. (2020). Current trends in the application of nanomaterials for the removal of emerging micropollutants and pathogens from water. Molecules, 25(9). https://doi.org/10.3390/molecules25092016
  • Kosslick, H., Wang, Y. Y., Ibad, M. F., Guo, X. Y., Lütgens, M., Lochbrunner, S., Frank, M., Liem, N. Q., & Schulz, A. (2021). High-performance room-light-driven β-AgVO3/mpg-C3N4 Core/Shell photocatalyst prepared by mechanochemical method. Advances in Chemical Engineering and Science, 11(4), 290–315. https://doi.org/10.4236/aces.2021.114018
  • Liu, B., Lilong, M., Han, X., Zhang, J., & Shi, H. (2019). Highly efficient visible-light-driven photocatalytic activity of g-C3N4@Ag/AgVO3 composites for dye degradation and bacterial inactivation. Journal of Photochemistry and Amp; Photobiology, A: Chemistry, 380, 111866. https://doi.org/10.1016/j.jphotochem.2019.111866
  • Lu, Y., Hou, X., Cheng, K., & Feng, W. (2015). Photocatalytic Properties of TiO2 induced by ZnFe2O4 Nanoparticles under Visible Light Irradiation. Journal of Advanced Oxidation Technologies, 18(2), 331–338. https://doi.org/10.1515/jaots-2015-0220
  • Manikandan, V., Mahadik, M. A., Seon Hwang, I., Chae, W.-S., Ryu, J., & Suk Jang, J. (2021). Visible-Light-Active CuOx‑Loaded Mo-BiVO4 Photocatalyst for Inactivation of Harmful Bacteria (Escherichia coli and Staphylococcus aureus) and Degradation of Orange II Dye. ACS Omega, 6(37), 23901–23912. https://doi.org/10.1021/acsomega.1c02879
  • Mapossa, A. B., Mhike, W., Adalima, J. L., & Tichapondwa, S. (2021). Removal of organic dyes from water and wastewater using magnetic ferrite-based titanium oxide and zinc oxide nanocomposites: A review. Catalysts, 11(12), 1543. https://doi.org/10.3390/catal11121543
  • Nguyen, L. T. T., Nguyen, H. T. T., Le, T. H., Nguyen, L. T. H., Nguyen, H. Q., Pham, T. T. H., Bui, N. D., Tran, N. T. K., Nguyen, D. T. C., Lam, T. V., & Tran, T. V. (2021). Enhanced photocatalytic activity of spherical Nd3+ substituted ZnFe2O4 nanoparticles. Materials, 14(8), 2054. https://doi.org/10.3390/ma14082054
  • Nguyen, L. T. T., Vo, D.-V. N., Nguyen, L. T. H., Duong, A. T. T., Nguyen, H. Q., Chu, N. M., Thi Cam Nguyen, D., & Van Tran, T. (2022). Synthesis, characterization, and application of ZnFe2O4@ZnO nanoparticles for photocatalytic degradation of Rhodamine B under visible-light illumination. Environmental Technology & Innovation, 25, 102–130. https://doi.org/10.1016/j.eti.2021.102130
  • N, N., & Kumar, M. (2017). Performance analysis of photolytic, photocatalytic, and adsorption systems in the degradation of metronidazole on the perspective of removal rate and energy consumption. Water, Air, & Soil Pollution, 228(9). https://doi.org/10.1007/s11270-017-3532-0
  • Oluwole, A. O., & Olatunji, O. S. (2022). Photocatalytic degradation of tetracycline in aqueous systems under visible light irradiation using needle-like SnO2 nanoparticles anchored on exfoliated g-C3N4. Environmental Sciences Europe, 34(1). https://doi.org/10.1186/s12302-021-00588-7
  • Peng, J., Wang, Y., Sun, Y., & Zhang, D. (2020). In-situ green topotactic synthesis of a novel Z-scheme Ag@AgVO3/BiVO4 heterostructure with highly enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 579, 431–447. https://doi.org/10.1016/j.jcis.2020.06.094
  • Qin, C., Lei, S., Tang, X., Zhong, J., Jianzhang, L., & Jinjin, H. (2020). Preparation of novel Ag/AgVO3/BiVO4 heterojunctions with significantly enhanced visible light-driven photocatalytic performance originated from Z-scheme separation of photogenerated charge pairs. Inorganic Chemistry Communications, 116(2020), 107904. https://doi.org/10.1016/j.inoche.2020.107-904
  • Rasheed, F. A., & Ebrahim, S. E. (2020). Comparison between dead anaerobic biomass and synthesized Fe3O4 nanoparticles for the removal of Pb (II), Ni(II) and Cd(II. Desalination and Water Treatment, 173, 351–366. /USA. https://doi.org/10.5004/dwt.2020.24738
  • Rotjanasuworapong, K., Lerdwijitjarud, W., & Sirivat, A. (2021). Synthesis and characterization of Fe0.8Mn0.2Fe2O4 ferrite nanoparticle with high saturation magnetization via the surfactant assisted co-precipitation. Nanomaterials, 11(4), 876. https://doi.org/10.3390/nano11040876
  • Shakil, M., Inayat, U., Arshad, M. I., Nabi, G., Khalid, N. R., Tariq, N. H., Shah, A., & Iqbal, M. Z. Influence of zinc and cadmium co-doping on optical and magnetic properties of cobalt ferrites. (2020). Ceramics International, 46(6), 7767–7773. 0272-8842. https://doi.org/10.1016/j.ceramint.2019.11.280
  • Shakil, M., Inayat, U., Tanveer, M., Nabi, G., Gillani, S. S. A., Rafique, M., Tariq, N. H., Shah, A., & Mahmood, A. (2022). NiO and Ag–Cd co-doped NiO nanoparticles: Study of photocatalytic degradation of rhodamine B dye for wastewater treatment. International Journal of Environmental Science and Technology, 20(2), 2021–2036. https://doi.org/10.1007/s13762-022-04101-2
  • Sher, M., Ahmad Khan, S., Shahid, S., Javed, M., Azam Qamar, M., Chinnathambi, A., & Almoallim, H. S. Synthesis of novel ternary hybrid g-C3N4@Ag-ZnO nanocomposite with Z-scheme enhanced solar light‐driven methylene blue degradation and antibacterial activities. (2021). Journal of Environmental Chemical Engineering, 9(4), 105366. ISSN 2213-3437. https://doi.org/10.1016/j.jece.2021.105366
  • Singh, A., Dimple, P. D. Ballal, A., Tyagi, A. K., & Fulekar, M. H. (2014). Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires. Materials Research Bulletin, 51, 447–454. https://doi.org/10.1016/j.materresbull.2014.01.001
  • Singh, P., Shandilya, P., Raizada, P., Sudhaik, A., Rahmani-Sani, A., & Hosseini-Bandegharaei, A. (2020). Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arabian Journal Chemistry, 13(1), 3498–3520. https://doi.org/10.1016/j.arabjc.2018.12.001
  • SM, H. (2018). Optical properties for prepared polyvinyl alcohol/polyaniline/ZnO nanocomposites. Iraqi Journal of Physics, 16(36), 181–189. [Internet] Available from https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/42
  • Soleimani, S., Heydari, A., Fattahi, M., & Motamedisade, A. (2023). Calcium alginate hydrogels reinforced with cellulose nanocrystals for methylene blue adsorption: Synthesis, characterization, and modelling. Industrial Crops and Products, 192, 115999. ISSN 0926-6690. https://doi.org/10.1016/j.indcrop.2022.115999
  • Soraya1, S., Amir, H., Moslem, F. (2022). Isolation and characterization of cellulose nanocrystals from waste cotton fibers using sulfuric acid hydrolysis. Wiley, 74, 11–12, https://onlinelibrary.wiley.com/doi/pdf/10.1002/star.202200159.
  • Su, C., Zhang, D., Pu, X., He, Z., Hu, X., Li, L., & Hu, G. (2021). Magnetically separable NiFe2O4/Ag3VO4/Ag2VO2PO4 direct Z-scheme heterostructure with enhanced visi ble-light photoactivity. Journal of Chemical Technology & Biotechnology, 96(10), 2976–2985, https://doi.org/10.1002/jctb.6855.
  • Swady, E. A., & Jawad, M. K. (2021). Study FTIR and AC conductivity of nanocomposite electrolytes. Iraqi Journal of Physics (IJP), 19(51), 15–22. InternetAvailable from 2021 Dec. 1[cited 2023 Jan. 9] https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/689 https://doi.org/10.30723/ijp.v19i51.689
  • Tanveer, M., Nisa, I., Nabi, G., Shakil, M., Khalid, S., & Qadeer, M. A. Enhanced structural, optical, and photocatalytic activity of novel Cd–Zn co-doped Mg0.25 Fe1.75O4 for degradation of Rh B dye under visible light irradiation. (2022). Ceramics International, 48(11), 15451–15461. ISSN 0272-8842. https://doi.org/10.1016/j.ceramint.2022.02.079
  • Thakre, K. G., Barai, D. P., & Bhanvase, B. A. (2021, November). A review of graphene-TiO2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. Water Environment Research: A Research Publication of the Water Environment Federation, 93(11), 2414–2460. Epub 2021 Sep 22. PMID: 34378264. https://doi.org/10.1002/wer.1623
  • Xian, G., Kong, S., Li, Q., Zhang, G., Zhou, N., Du, H., & Niu, L. (2020). Synthesis of spinel ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for persulfate activation to remove aqueous organics: Effects of M-Site metal and synthetic method. Frontiers in Chemistry, 8, 177. PMID: 32266209; PMCID: PMC7105867. https://doi.org/10.3389/fchem.2020.00177
  • Yao, Y., Fang, L., Qin, J., Wei, F., Chuan, X., Wang, S., & Wang, S. (2014). Magnetic ZnFe 2 O 4 –C 3 N 4 hybrid for photocatalytic degradation of aqueous organic pollutants by visible light. Engineering Chemistry Research, 53(44), 17294–17302. https://doi.org/10.1021/ie503437z
  • Yongsheng, F., & Wang, X. (2011). Magnetically separable ZnFe2O4–Graphene catalyst and its high photocatalytic performance under visible light irradiation. Industrial & Engineering Chemistry Research, 50(12), 7210–7218. https://doi.org/10.1021/ie200162a
  • Yousif, Y. M., Ebrahim, S. E., & Hyder, N. H. (2018). Prediction the Breakthrough Curves of Lead Ions Biosorption in Fluidized Bed Reactor Using Artificial Neural Network. The Journal of Solid Waste Technology and Management, 44(4), 321–329. https://doi.org/10.5276/JSWTM.2018.321
  • Yuan, D., Huang, L., Yeping, L., Yuanguo, X., Hui, X., Huang, S., Yan, J., Minqiang, H., & Huaming, L. (2016). The royal society of chemistry ,1. RSC Advance, 6(47), 41204–41213. https://doi.org/10.1039/C6RA05565F
  • Zhao, W., Jinhai, L., Wei, Z., Wang, S., Huan, H., Sun, C., & Yang, S. (2015). Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/RGO and its excellent visible-light photocatalytic activity. Applied Catalysis B, Environmental, https://doi.org/10.1016/j.apcatb.2015.05.002
  • Zhao, W., Li, J., Wei, Z., Wang, S., He, H., Sun, C., & Yang, S. (2015). Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/RGO and its excellent visible-light photocatalytic activity. Applied Catalysis B-Environmental, 179, 9–20. https://doi.org/10.1016/j.apcatb.2015.05.002/
  • Zhao, L., Yang, H., Yu, L., Sun, W., Cui, Y., Yan, Y., & Feng, S. (2004). Structure and magnetic properties of Ni0.7Mn0.3Fe2O4 nanoparticles doped with La2O3. Physica Status Solidi (A), 201(14), 3121–3128. https://doi.org/10.1002/pssa.200406856
  • Zuliani, A., & Cova, C. M. (2021). Green synthesis of heterogeneous visible-light-active photocatalysts: Recent advances. Photochem, 1(2), 147–166. https://doi.org/10.3390/photochem1020009