656
Views
0
CrossRef citations to date
0
Altmetric
Materials Engineering

Effects of acetylation treatment on pineapple leaf fiber (Ananas comosus) reinforced with tapioca bio-based resin (cassava starch)

, ORCID Icon, &
Article: 2229109 | Received 01 Mar 2023, Accepted 20 Jun 2023, Published online: 06 Sep 2023

References

  • Alotaibi, M. D., Alshammari, B. A., Saba, N., Alothman, O. Y., Sanjay, M. R., Almutairi, Z., & Jawaid, M. (2019). Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). International Journal of Biological Macromolecules, 135, 69–11. https://doi.org/10.1016/j.ijbiomac.2019.05.102
  • Athith, D., Sanjay, M. R., Gowda, T. G. Y., Madhu, P., Arpitha, G. R., Yogesha, B., & Omri, M. A. (2017). Effect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. Journal of Industrial Textiles, 48(4), 713–737. https://doi.org/10.1177/1528083717740765
  • Atiqah, A., Jawaid, M., Sapuan, S. M., & Ishak, M. R. (2018). Effect of surface treatment on the mechanical properties of sugar palm/glass fiber-reinforced thermoplastic polyurethane hybrid composites. Bioresources, 13(1), 1174–1188. https://doi.org/10.15376/biores.13.1.1174-1188
  • Atuanya, C. U., Onukwuli, O. D., & Aigbodion, V. S. (2014). Experimental correlation of wear parameters in Al-Si-Fe alloy/breadfruit seed hull ash particle composites. Journal of Composite Materials, 48(12), 1487–1496. https://doi.org/10.1177/0021998313487935
  • Baghban, M. H., & Mahjoub, R. (2020). Natural Kenaf fiber and LC3 binder for sustainable fiber-reinforced cementitious composite: A review. Applied Sciences, 10(357), 1–15. https://doi.org/10.3390/app10010357
  • Chukwudi, A. D., Uzoma, O. T., Azuka, U.-A.-A., & Sunday, E. C. (2015). Comparison of acetylation and alkali treatments on the physical and morphological properties of raffia palm fibre reinforced composite. Science Journal of Chemistry, 3(4), 72–77. https://doi.org/10.11648/j.sjc.20150304.12
  • Debeli, D. K., Qin, Z., & Guo, J. (2018). Study on the pre-treatment, physical and chemical properties of ramie fibers reinforced poly (lactic acid) (PLA) biocomposite. Journal of Natural Fibers, 15(4), 596–610. https://doi.org/10.1080/15440478.2017.1349711
  • Dolez, P. I., Arfaoui, M. A., Dubé, M., & David, É. (2017). Hydrophobic treatments for natural fibers based on metal oxide nanoparticles and fatty acids. Procedia Engineering, 200, 81–88. https://doi.org/10.1016/j.proeng.2017.07.013
  • Eddy, N. O., Ita, B. I., Dodo, S. N., & Paul, E. D. (2012). Inhibitive and adsorption properties of ethanol extract of Hibiscus sabdariffa Calyx for the corrosion of mild steel in 0.1 M HCl. Green Chemistry Letters and Reviews, 5(1), 43–53. https://doi.org/10.1080/17518253.2011.578589
  • Halip, J. A., Hua, L. S., Ashaari, Z., Tahir, P. M., Chen, L. W., & Uyup, M. K. A. (2019). Effect of treatment on water absorption behavior of natural fiber–reinforced polymer composites. In Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites (pp. 141–156). Elsevier. https://doi.org/10.1016/B978-0-08-102292-4.00008-4
  • Hussain, S. A., Pandurangadu, V., & Kumar, K. P. (2016). Optimization of mechanical properties of green coconut fiber/HDPE composites by using flexural strength. International Journal of Advanced Science & Technology, 92, 1–8. https://doi.org/10.14257/ijast.2016.92.01
  • Kellar, A. (2003). Compounding and mechanical properties of biodegradable hemp fibre composites. Composites Science and Technology, 63(9), 1307–1316. https://doi.org/10.1016/s0266-3538(03)00102-7
  • Mahjoub, R., Yatim, J. M., Sam, A. R. M., & Hashemi, S. H. (2014). Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 55, 103–113. https://doi.org/10.1016/j.conbuildmat.2014.01.036
  • Odera, R. S., Onukwuli, O. D., & Atuanya, C. U. (2015). Characterization of the thermo microstructural analysis of raffia palm fibers proposed for roofing sheet production. Journal of Minerals and Materials Characterization and Engineering, 3(4), 335–343. https://doi.org/10.4236/jmmce.2015.34036
  • Odera, R. S., Onukwuli, O. D., & Nwabanne, J. T. (2016). Experimental evaluation of raffia palm fiber ash particles modified polyester cement mortar composites. Journal of the Chinese Advanced Materials Society, 4(1), 70–81. https://doi.org/10.1080/22243682.2015.1072733
  • Odera, R. S., Onukwuli, O. D., & Osoka, E. C. (2011). Tensile and compressive strength characteristics of raffia palm fibre-cement composites. Journal of Emerging Trends in Engineering and Applied Sciences, 2(2), 231–234. https://hdl.handle.net/10520/EJC138551
  • Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science & Technology, 63(9), 1317–1324. https://doi.org/10.1016/S0266-35380300103-9
  • Onukwuli, O. D., & Okoronkwo, G. O. (2016). Tensile properties of ramie fibre reinforced epoxy composites. International Journal of Innovative Engineering, Technology and Science, 1(2), 220–223.
  • Rana, A. K., Mandal, A., & Bandyopadhyay, S. (2003). Short jute fiber reinforced polypropylene composites: Effect of compatibiliser, impact modifier and fiber loading. Composite Science & Technology, 63(6), 801–806. https://doi.org/10.1016/s0266-3538(02)00267-1
  • Salem, T. F., Tirkes, S., Akar, A. O., & Tayfun, U. (2020). Enhancement of mechanical, thermal and water uptake performance of TPU/jute fiber green composites via chemical treatments on fiber surface. e-Polymers, 20(1), 133–143. https://doi.org/10.1515/epoly-2020-0015
  • Singh, J. I. P., Dhawan, V., Singh, S., & Jangid, K. (2017). Study of effect of surface treatment on mechanical properties of natural fiber reinforced composites. Materials Today: Proceedings, 4(2), 2793–2799. https://doi.org/10.1016/j.matpr.2017.02.158
  • Singleton, A. C. N., Baillie, C. A., Beaumont, P. W. R., & Peijs, T. (2003). On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Composites Part B: Engineering, 34(6), 519–526. https://doi.org/10.1016/s1359-8368(03)00042-8
  • Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2004). Fundamentals of analytical chemistry (8th ed.). Thomson Learning Inc.
  • Smith, P. W. G., Vogel, A. I., Tatchell, A. R., Furniss, B. S., & Hannaford, A. J. (2009). Vogel’s textbook of practical organic chemistry (5th ed.). Longman Group.
  • Sreekala, M., & Thomas, S. (2003). Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Composites Science and Technology, 63(6), 861–869. https://doi.org/10.1016/S0266-35380200270-1
  • Thakur, V. K., & Thakur, M. K. (2014). Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102–117. https://doi.org/10.1016/j.carbpol.2014.03.039
  • Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., & Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), 309–320. https://doi.org/10.1016/S1359-8368(98)00054-7
  • Várdai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Faludi, G., Móczó, J., & Pukánszky, B. (2020). Comparative study of fiber reinforced PP composites: Effect of fiber type, coupling and failure mechanisms. Composites Part A Applied Science and Manufacturing, 133, 105895. https://doi.org/10.1016/j.compositesa.2020.105895
  • Varghese, A. M., & Mittal, V. (2017). Surface modification of natural fibers. In Biodegradable and Biocompatible Polymer Composites (p. 115). Elsevier. https://doi.org/10.1016/B978-0-08-100970-3.00005-5
  • Wang, X., Petru, M., & Yu, H. (2019). The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Construction and Building Materials, 208, 220–227. https://doi.org/10.1016/j.conbuildmat.2019.03.001
  • Yan, L. (2012). Effect of alkali treatment on vibration characteristics and mechanical properties of natural fabric reinforced composites. Journal of Reinforced Plastics and Composites, 31(13), 887–896. https://doi.org/10.1177/0731684412449399