554
Views
1
CrossRef citations to date
0
Altmetric
Biomedical Engineering

Perceived distress in assisted gait with a four-wheeled rollator under stress induction conditions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2233743 | Received 19 Jul 2022, Accepted 28 Jun 2023, Published online: 13 Jul 2023

References

  • Akmandor, A. O., & Jha, N. K. (2017). Keep the stress away with SoDA: Stress detection and alleviation system. IEEE Transactions on Multi-Scale Computing Systems, 3(4), 269–22. https://doi.org/10.1109/TMSCS.2017.2703613
  • Baig, M. Z., & Kavakli, M. (2019). A survey on psycho-physiological analysis & measurement methods in multimodal systems. Multimodal Technologies and Interaction, 3(2), 37. https://doi.org/10.3390/mti3020037
  • Campbell, J., & Ehlert, U. (2012). Acute psychosocial stress: Does the emotional stress response correspond with physiological responses? Psychoneuroendocrinology, 37(8), 1111–1134. https://doi.org/10.1016/j.psyneuen.2011.12.010
  • Can, Y. S., Arnrich, B., & Ersoy, C. (2019). Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. Journal of Biomedical Informatics, 92(February), 103139. https://doi.org/10.1016/j.jbi.2019.103139
  • Cortés, U., Martínez-Valesco, A., Barrué, C., Benedico, T., Campana, F., Fernandez, J., & Annichiarico, R. (2008). A SHARE-it service to elders’ mobility using the i-walker. Gerontechnology, 7(2). https://doi.org/10.4017/gt.2008.07.02.032.00
  • Diaz-Boladeras, M., Llanas, X., Musté, M., Pérez, E., Pérez, C., Barco, A., & Català, A. (2021). Validation of a nonintrusive wearable device for distress estimation during robotic roller assisted gait. In Advances in computational imaging (pp. 570–582). https://doi.org/10.1007/978-3-030-85030-2_47
  • Dobkin, B. H. (2009). Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: Common denominators within recent clinical trials. Current Opinion in Neurology, 22(6), 563–569. https://doi.org/10.1097/WCO.0b013e3283314b11
  • Fernandez-Carmona, M., Ballesteros, J., Díaz-Boladeras, M., Parra-Llanas, X., Urdiales, C., & Gómez de Gabriel, J. M. (2022). Walk-IT: An open-source modular low-cost smart rollator. Sensors, 22(6), 2086. https://doi.org/10.3390/s22062086
  • Freedman, V. A., Agree, E. M., Martin, L. G., & Cornman, J. C. (2006). Trends in the use of assistive technology and personal care for late-life disability, 1992-2001. The Gerontologist, 46(1), 124–127. https://doi.org/10.1093/geront/46.1.124
  • Frizera, A., Ceres, R., Pons, J. L., Abellanas, A., & Raya, R. (2008). The smart walkers as geriatric assistive device. The simbiosis purpose. Gerontechnology, 7(2). https://doi.org/10.4017/GT.2008.07.02.045.00
  • Giannakakis, G., Pediaditis, M., Manousos, D., Kazantzaki, E., Chiarugi, F., Simos, P. G., Marias, K., & Tsiknakis, M. (2017). Stress and anxiety detection using facial cues from videos. Biomedical Signal Processing and Control, 31, 89–101. https://doi.org/10.1016/j.bspc.2016.06.020
  • Graf, B. (2009). An adaptive guidance system for robotic walking aids. Journal of Computing and Information Technology, 17(1), 109–120. https://doi.org/10.2498/CIT.1001159
  • Han, Y., Liu, C., Zhang, B., Zhang, N., Wang, S., Han, M., Ferreira, J. P., Liu, T., & Zhang, X. (2022). Measurement, evaluation, and control of active intelligent gait training systems—analysis of the current state of the art. Electronics, 11(10), 1633. https://doi.org/10.3390/electronics11101633
  • Hui, T. K. L., & Sherratt, R. S. (2018). Coverage of emotion recognition for common wearable biosensors. Biosensors, 8(2), 30. https://doi.org/10.3390/bios8020030
  • INE. (2020). Disability, Independence and Dependency Situations Survey (DIDSS). https://www.ine.es/dyngs/INEbase/en/operacion.htm?c=Estadistica_C&cid=1254736176782&menu=ultiDatos&idp=1254735573175
  • Kocielnik, R., Sidorova, N., Maggi, F. M., Ouwerkerk, M., & Westerink, J. H. D. M. (2013). Smart technologies for long-term stress monitoring at work. Proceedings of CBMS 2013 - 26th IEEE International Symposium on Computer-Based Medical Systems, 53–58. https://doi.org/10.1109/CBMS.2013.6627764
  • Kulyukin, V., Kutiyanawala, A., LoPresti, E., Matthews, J., & Simpson, R. (2008). Iwalker: Toward a rollator-mounted wayfinding system for the elderly. 2008 IEEE International Conference on RFID (Frequency Identification), IEEE RFID 2008, 303–311. https://doi.org/10.1109/RFID.2008.4519363
  • Lang, P. J., Bradley, M. M., & Cuthbert, B. (2008). International Affective Picture System (IAPS): Instruction manual and affective ratings Technical Report A-8. The Center for Research in Psychophysiology, University of Florida.
  • Larsen, R. J., & Diener, E. (1992). Promises and problems with the circumplex model of emotion. In Clark, Margaret S (Ed.), Emotion (pp. 25–59). Sage Publications, Inc.
  • Liao, D., Shu, L., Liang, G., Li, Y., Zhang, Y., Zhang, W., & Xu, X. (2020). Design and evaluation of affective virtual reality system based on multimodal physiological signals and Self-Assessment Manikin. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 4(3), 216–224. https://doi.org/10.1109/JERM.2019.2948767
  • Liapis, A., Katsanos, C., Sotiropoulos, D., Xenos, M., & Karousos, N. (2015). Stress recognition in human-computer interaction using physiological and self-reported data: A study of gender differences. ACM International Conference Proceeding Series, 01-03 October, 323–328. https://doi.org/10.1145/2801948.2801964
  • Lutscher, D. (2016). The relationship between skin conductance and self-reported stress (Issue June) University of Twente. https://essay.utwente.nl/69969/1/Lutscher_BA_BMS.pdf
  • Menghini, L., Gianfranchi, E., Cellini, N., Patron, E., Tagliabue, M., & Sarlo, M. (2019). Stressing the accuracy: Wrist-worn wearable sensor validation over different conditions. Psychophysiology, 56(11), 1–15. https://doi.org/10.1111/psyp.13441
  • Möller, J., Hallqvist, J., Laflamme, L., Mattsson, F., Ponzer, S., Sadigh, S., & Engström, K. (2009). Emotional stress as a trigger of falls leading to hip or pelvic fracture. Results from the ToFa study - a case-crossover study among elderly people in Stockholm, Sweden. BMC Geriatrics, 9(1), 1–9. https://doi.org/10.1186/1471-2318-9-7
  • Ollander, S. (2015). Wearable sensor data fusion for human stress estimation [ Dissertation]. Linköping. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122348
  • Ollander, S., Godin, C., Campagne, A., & Charbonnier, S. (2017). A comparison of wearable and stationary sensors for stress detection. 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings, March 2019, 4362–4366. https://doi.org/10.1109/SMC.2016.7844917
  • Peel, C., Sawyer Baker, P., Roth, D. L., Brown, C. J., Brodner, E. V., & Allman, R. M. (2005). Assessing mobility in older adults: The UAB study of aging life-space assessment. Physical Therapy, 85(10), 1008–1119. https://doi.org/10.1093/ptj/85.10.1008
  • Ren, P., Barreto, A., Huang, J., Gao, Y., Ortega, F. R., & Adjouadi, M. (2014). Off-line and on-line stress detection through processing of the pupil diameter signal. Annals of Biomedical Engineering, 42(1), 162–176. https://doi.org/10.1007/s10439-013-0880-9
  • Salminen, A. L., Brandt, A., Samuelsson, K., Töytäri, O., & Malmivaara, A. (2009). Mobility devices to promote activity and participation: A systematic review. Journal of Rehabilitation Medicine, 41(9), 697–706. https://doi.org/10.2340/16501977-0427
  • Schmidt, P., Reiss, A., Dürichen, R., & Laerhoven, K. V. (2019). Wearable-based affect recognition—A review. Sensors, 19(19), 4079. https://doi.org/10.3390/s19194079
  • Sharma, N., & Gedeon, T. (2012). Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Computer Methods and Programs in Biomedicine, 108(3), 1287–1301. https://doi.org/10.1016/j.cmpb.2012.07.003
  • Swangnetr, M., & Kaber, D. B. (2013). Emotional state classification in patient-robot interaction using wavelet analysis and statistics-based feature selection. IEEE Transactions on Human-Machine Systems, 43(1), 63–75. https://doi.org/10.1109/TSMCA.2012.2210408
  • Urdiales, C., Fernandez-Espejo, B., Annicchiaricco, R., Sandoval, F., & Caltagirone, C. (2010). Biometrically modulated collaborative control for an assistive wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(4), 398–408. https://doi.org/10.1109/TNSRE.2010.2056391
  • Urdiales, C., Peula, J. M., Fdez-Carmona, M., Barrué, C., Pérez, E. J., Sánchez-Tato, I., Del Toro, J. C., Galluppi, F., Cortés, U., Annichiaricco, R., Caltagirone, C., & Sandoval, F. (2011). A new multi-criteria optimization strategy for shared control in wheelchair assisted navigation. Autonomous Robots, 30(2), 179–197. https://doi.org/10.1007/s10514-010-9211-2
  • Ursin H and Eriksen H R. (2004). The cognitive activation theory of stress. Psychoneuroendocrinology, 29(5), 567–592. 10.1016/S0306-4530(03)00091-X
  • World Health Organization. (2011) World report on disability: Main report. World Bank Group. http://documents.worldbank.org/curated/en/665131468331271288/Main-report.