392
Views
0
CrossRef citations to date
0
Altmetric
Materials Engineering

Experimental investigation of SC108 clamping components hardening parameter based on AISI 4140 steel to distortion minimization

, , & ORCID Icon
Article: 2234716 | Received 27 Mar 2023, Accepted 04 Jul 2023, Published online: 10 Jul 2023

References

  • Anggoro, P. W., Bawono, B., Jamari, J., Tauviqirrahman, M., & Bayuseno, A. P. (2021, March). Advanced design and manufacturing of custom orthotics insoles based on hybrid Taguchi-response surface method. Heliyon, 7(3), e06481. https://doi.org/10.1016/j.heliyon.2021.e06481
  • Anggoro, P. W., Bawono, B., Setyohadi, D. B., Ratnasari, L., Fergiawan, P. K., Tauviqirrahman, M., Jamari, A. P., & Bayuseno, J. (2023, June). Optimisation of the machining time required by insole orthotic shoes for patients with clubfoot using the Taguchi and respon surface methodology approach. Heliyon, 9(6), e16860. https://doi.org/10.1016/j.heliyon.2023.e16860
  • Anggoro, P. W., Bawono, B., Tauviqirrahman, M., Bayuseno, A. P., & Jamari, J. (2019, August). Design and manufacturing orthotics shoe insole with optimum surface roughness using the CNC milling. Journal of Engineering Science & Technology, 14(4), 1799–22. Corpus ID: 208876928.
  • Anggoro, P. W., Purharyono, Y., Anthony, A. A., Tauviqirrahman, M., Bayuseno, A. P., & Jamari, J. (2022, May). Optimisation of cutting parameters of new material orthotic insole using a Taguchi and response surface methodology approach. Alexandria Engineering Journal, 61(5), 3613–3632. https://doi.org/10.1016/j.aej.2021.08.083
  • Bhagyalaxmi, Hegde, A., Sharma, S., & Jayashree, P. K. (2023, May). Analysis of tempering temperature and vegetable oil quenchant viscosity effect on mechanical properties of 42CrMo4 steel. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2216052
  • Bhagyalaxmi, B. E. A., Sharma, S., & Kini, V. (2018, December). Effect of heat treatment and mechanical characterization of AISI 4140 steel. International Journal of Mechanical and Production Engineering Research and Development, 8(6), 603–610. https://doi.org/10.24247/IJMPERDDEC201863
  • Bilal, M. M., Yaqoob, K., Zahid, M. H., Haq, E. U., Tanveer, W. H., Wadood, A., & Ahmed, B. (2019, November-December). Effect of austempering conditions on the microstructure and mechanical properties of AISI 4340 and AISI 4140 steels. Journal of Materials Research and Technology, 8(6), 5194. https://doi.org/10.1016/j.jmrt.2019.08.042
  • Canale, L. D. C. F., & Totten, G. E. (2005, January). Overview of distortion and residual stress due to quench processing part I: Factors affecting quench distortion. International Journal of Materials and Product Technology, 24(1/2/3/4), 4. https://doi.org/10.1504/IJMPT.2005.007941
  • Clark, A., Bowers, R. J., & Northwood, D. O. (2014, May). Heat treatment effects on distortion, residual stress, and retained austenite in carburized 4320 steel. Materials Science Forum, 783-786, 692–697. https://doi.org/10.4028/www.scientific.net/MSF.783-786.692
  • Decroos, K., & Seefeldt, M. (2017, December). The effect of size on the distortion behavior after carburisation and quenching processes of gears. International Journal of Metallurgical & Materials Engineering, 3(2), 139. https://doi.org/10.15344/2455-2372/2017/139
  • Djimtoingar, S. S., Derkyi, N. S. A., Kuranchie, F. A., & Yankyera, J. K. (2022, November). A review of response surface methodology for biogas process optimization. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2115283
  • Fakir, R., Barka, N., Brousseau, J., & Caron-Guillemette, G. (2020, July). Analysis of the mechanical behavior of AISI 4340 steel cylindrical specimens heat treated with fiber laser. Journal of Manufacturing Processes, 55, 41–56. https://doi.org/10.1016/j.jmapro.2020.03.039
  • Farivar, H., Prahl, U., Hans, M., & Bleck, W. (2018, August). Microstructural adjustment of carburized steel components towards reducing the quenching-induced distortion. Journal of Materials Processing Technology, 264, 313–327. https://doi.org/10.1016/j.jmatprotec.2018.08.040
  • Gurumurthy, B. M., Kini, A. U., Sharma, S., Hiremath, P., Gowrishankar, M. C., & Jones, I. P. (2021, September). Effect of intercritical processing temperature on mechanical properties, microstructure and microhardness of ferrite-bainite medium carbon dual phase Steels. Cogent Engineering, 8(1), 1999062. https://doi.org/10.1080/23311916.2021.1999062
  • Guterres, N. F. D. S., Rusnaldy, R., & Widodo, A. (2017, January). Gear distortion analysis due to heat-treatment process. AIP Conference Proceedings, 1788(1), 030038. https://doi.org/10.1063/1.4968291
  • Hardin, R. A., & Beckermann, C. (2005). Simulation of heat treatment distortion. Proceeding of the 59th SFSA Technical and Operating Conference, Chicago (p. 3.3).
  • Hasan, H. S., Khaleefah, R. H., Al Haboubi, N. A., & Salman, R. D. (2018, December). Effect of agitation, temperature, and quenching medium on cooling curve and cooling rate for steels. Al-Nahrain Journal for Engineering Sciences, 21(4), 473–478. https://doi.org/10.29194/NJES.21040473
  • Hazir, E., & Ozcan, T. (2018, September). Response surface methodology integrated with desirability function and genetic algorithm approach for the optimization of CNC machining parameters. Arabian Journal for Science and Engineering, 44(3), 2795–2809. https://doi.org/10.1007/s13369-018-3559-6
  • Ismartaya, K., Karyadi, G. B., Bawono, B., & Anggoro, P. W. (2022). Optimalisasi Ketangguhan dan Kekerasan Baja AISI 4340 pada Shank Holder Dovetail Cutter paska Proses Hardening dengan Minimasi Biaya Proses. Jurnal Rekayasa Mesin. December, 17(3), 473–484. https://doi.org/10.32497/jrm.v17i3.3982
  • Li, Z., Ferguson, B. L., Nemkov, V., Goldstein, R., Jackowski, J., & Fett, G. (2014, December). Effect of quenching rate on distortion and residual stresses during induction hardening of a full-float truck axle shaft. Journal of Materials Engineering and Performance, 23(12), 4170–4180. https://doi.org/10.1007/s11665-014-1196-0
  • Li, Z., Grandhi, R. V., & Srinivasan, R. (2006, February). Distortion minimization during gas quenching process. Journal of Materials Processing Technology, 172(2), 249–257. https://doi.org/10.1016/j.jmatprotec.2005.10.018
  • Liscic, B., Tensi, H. M., Canale, L. C. F., Totten, G. E., Liscic, B., Tensi, H. M., Canale, L. C. F., & Totten, G. E. (2010). Quenching theory, and technology (2nd ed.). CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781420009163
  • Liu, Y., Qin, S., Hao, Q., Chen, N., Zuo, X., & Rong, Y. (2017, January). Finite element simulation and experimental verification of internal stress of quenched AISI 4140 cylinders. Metallurgical and Materials Transactions A, 48(3). https://doi.org/10.1007/s11661-016-3916-6
  • Lopez-Garcia, R. D., Garcia-Pastor, F. A., Castro-Roman, M. J., Alfaro-Lopez, E., & Acosta-Gonzalez, F. A. (2016, February). Effect of immersion routes on the quenching distortion of a long steel component using a finite element model. Transactions of the Indian Institute of Metals, 69(9), 1645–1656. https://doi.org/10.1007/s12666-015-0738-y
  • Lopez-Garcia, R. D., Medina-Juarez, I., & Maldonado-Reyes, A. (2022, April). Effect of quenching parameters on distortion phenomena in AISI 4340 steel. Metals - Open Access Metallurgy Journal, 12(5), 759. https://doi.org/10.3390/met12050759
  • Mahmood, N. J., Hussein, A. A., Hasan, A. S., & Ali, O. M., Effect of AISI 4140 carbon steel heat treatments on specified mechanical properties. 4th International Conference on Materials Engineering & Science, AIP Conference Proceedings. November. 2022; 2660: pp. 020065-1-0120065–8. https://doi.org/10.1063/5.0107707.
  • Mehrabi, A., Sharifi, H., Asadabad, M. A., Najafabadi, R. A., & Rajaee, A. (2020, August). Improvement of AISI 4340 steel properties by intermediate quenching – microstructure, mechanical properties, and fractography. International Journal of Materials Research (Formerly Zeitschrift Fuer Metallkunde), 111(9), 711–779. https://doi.org/10.3139/146.111939
  • Nallathambi, A. K., Kaymak, Y., Specht, E., & Bertram, A. (2010, January). Sensitivity of material properties on distortion and residual stresses during metal quenching processes. Journal of Materials Processing Technology, 210(2), 204–211. https://doi.org/10.1016/j.jmatprotec.2009.09.001
  • Nallathambi, A. K., Specht, Y., Kaymak, E., Bertram, A., & Bertram, A. (2009, April). Optimum strategies to reduce residual stresses and distortion during the metal quenching process. Journal of ASTM International, 6(4), 101806. https://doi.org/10.1520/JAI101806
  • Nan, C., Northwood, D. O., Bowers, R. J., Sun, X., & Bauerle, P. (2009, May). The use of Navy C-ring specimens to study distortion in ferritic nitrocarburized 1010 steel. WIT Transactions on Engineering Sciences, 62, 1743. https://doi.org/10.2495/SECM090021
  • Northwood, D. O., He, L., Boyle, E., & Bowers, R. (2007, March). Retained austenite – residual stress – distortion relationships in carburized SAE 8620 steel. Materials Science Forum, 539-543, 539–543. https://doi.org/10.4028/www.scientific.net/MSF.539-543.4464
  • Nunes, M. M., Silva, E. M. D., Renzetti, R. A., & Brito, T. G. (2018, October). Analysis of quenching parameters in AISI 4340 steel by using design of experiments. Materials Research, 22(1), e20180315. https://doi.org/10.1590/1980-5373-MR-2018-0315
  • Passanha, J., Sharma, S., Hegde, A., Lakshmi, B., Shankar, G., & Murthy, G. (2022, November). Experimental and statistical analysis of vegetable oil-brine egg yolk emulsion quench on the properties of AISI 4140 steel. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2146626
  • Rajan, T. V., Sharma, C. P., & Sharma, A. (2011). Heat treatment: principles and techniques (2nd ed.). PHI Learning Private Limited.
  • Ray, B. C., Prusty, R. K., & Nayak, D. (2020). Phase transformations and heat treatments of steels (1st ed.). CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9780429019210-1
  • Safi, S. M., & Givi, M. K. B. (2014, February). A new step heat treatment for steel AISI 4340. Metal Science and Heat Treatment, 56(1), 19–22. https://doi.org/10.1007/s11041-014-9707-z
  • Samuel, A., & Prabhu, K. N. (2022, March). Residual stress, and distortion during quench hardening of steels: A review. Journal of Materials Engineering and Performance, 31(7), 5161–5188. https://doi.org/10.1007/s11665-022-06667-x
  • Sari, N. K., Purbasari, I. Y., Anggoro, P. W., Jamari, J., Bayuseno, A. P., & Arellano-Garcia, H. (2022). Reuse of wheat flour liquid waste for enzymatic hydrolysis to yield glucose-derived biotanol. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2101229
  • Silva, A. D. D., Pedrosa, T. A., Gonzalez-Mendez, J. L., Jiang, X., Cetlin, P. R., & Altan, T. (2012). Distortion in quenching an AISI 4140 C-ring – Predictions and experiments. Materials and Design, 42, 55–61. https://doi.org/10.1016/j.matdes.2012.05.031
  • Solic, S., Podgornik, B., & Leskovsek, V. (2018, October). The occurrence of quenching cracks in high-carbon tool steel depending on the austenitizing temperature. Engineering Failure Analysis, 92, 140–148. https://doi.org/10.1016/j.engfailanal.2018.05.008
  • Sonar, T., Lomte, S., Gogte, C., & Balasubramanian, V. (2018). Minimization of distortion in heat treated AISI D2 tool steel: Mechanism and distortion analysis. Procedia Manufacturing, 20, 113–118. https://doi.org/10.1016/j.promfg.2018.02.016
  • Totten, G., Howes, M., & Inoue, T. (2002). Handbook of residual stress and deformation of steel. ASM International.
  • Watanabe, K., Yamada, M., Nakasaki, M., Matsumoto, R., & Utsunomiya, H. (2020). Determination of transformation plasticity coefficient of steel by horizontal quenching of shaft. Procedia Manufacturing, 50, 498–502. https://doi.org/10.1016/j.promfg.2020.08.090
  • Zhang, G., He, X., Zhang, Q., Wang, W., & Wang, M. (2021, January). Comparison of microstructure and heat treatment distortion of gear steels with and without Nb addition. Journal of Iron and Steel Research International, 28(12), 488–495. https://doi.org/10.1007/s42243-020-00521-x
  • Zheng, L., Zheng, D., Zhao, L., Wang, L., & Zhang, K. (2013, May). Novel water-air circulation quenching process for AISI 4140 steel. Metals and Materials International, 19(6), 1373–1376. https://doi.org/10.1007/s12540-013-6034-7
  • Zhu, Z., Jin, Z., Wu, D., Wang, X. A., Yu, Y., Guo, X., & Wang, X. (. (2022, July). Assessment of surface roughness in milling of beech using a response surface methodology and an adaptive network-based fuzzy inference system. Machines, 10(7), 567. https://doi.org/10.3390/machines10070567