787
Views
3
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Assessment of ageing effect on the mechanical and damping characteristics of thin quasi-isotropic hybrid carbon-Kevlar/epoxy intraply composites

, ORCID Icon, &
Article: 2235111 | Received 05 Jun 2023, Accepted 06 Jul 2023, Published online: 16 Jul 2023

References

  • Agarwal, B. D., & Broutman, L. J. (1990). Analysis and performance of fibre composites (2nd ed.). John Wiley & Sons Inc.
  • Ahmad, F., Abbassi, F., Ul-Islam, M., Jacquemin, F., & Hong, J. W. (2021). Enhanced impact-resistance of aeronautical quasi-isotropic composite plates through diffused water molecules in epoxy. Scientific Reports, 11(1), 1–23. https://doi.org/10.1038/s41598-021-81443-w
  • Almeida, J. H. S., Souza, S. D. B., Botelho, E. C., & Amico, S. C. (2016). Carbon fibre-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning. Journal of Materials Science, 51(9), 4697–4708. https://doi.org/10.1007/s10853-016-9787-9
  • Aoki, Y., Yamada, K., & Ishikawa, T. (2008). Effect of hygrothermal condition on compression after impact strength of CFRP laminates. Composites Science and Technology, 68(6), 1376–1383. https://doi.org/10.1016/j.compscitech.2007.11.015
  • Arpatappeh, F. A., Azghan, M. A., & Eslami-Farsani, R. (2020). The effect of stacking sequence of basalt and Kevlar fibres on the Charpy impact behavior of hybrid composites and fibre metal laminates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(16), 3270–3279. https://doi.org/10.1177/0954406220914325
  • Arun, K. V., Basavarajappa, S., & Sherigara, B. S. (2010). Damage characterisation of glass/textile fabric polymer hybrid composites in sea water environment. Materials & Design, 31(2), 930–939. https://doi.org/10.1016/j.matdes.2009.07.029
  • ASTM D2344/D2344M-13. (2013). Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International.
  • ASTM D3039/D3039M-14. (2014). Standard test method for tensile properties of polymer matrix composite. ASTM International.
  • ASTM D7264/D7264M-07. (2007). Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International.
  • ASTM E756-05. (2005). Standard test method for measuring vibration-damping properties of materials. Annual Book of ASTM Standards, 5, 14. https://doi.org/10.1520/E0756-05R17.2
  • Bandaru, A. K., Chouhan, H., & Bhatnagar, N. (2020). High strain rate compression testing of intra-ply and inter-ply hybrid thermoplastic composites reinforced with Kevlar/basalt fibres. Polymer Testing, 84, 106407. https://doi.org/10.1016/j.polymertesting.2020.106407
  • Behnia, S., Daghigh, V., Nikbin, K., Fereidoon, A., & Ghorbani, J. (2016). Influence of stacking sequence and notch angle on the charpy impact behavior of hybrid composites. Mechanics of Composite Materials, 52(4), 489–496. https://doi.org/10.1007/s11029-016-9599-7
  • Bilisik, K. (2021). Aramid fiber reinforced composites. In Fiber Reinforced Composites (pp. 515–559). Woodhead Publishing. 9780128210901 . https://doi.org/10.1016/B978-0-12-821090-1.00003-X
  • Chawla, K. K. (2012). Composite materials: Science and engineering (3rd ed.). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74365-3
  • Costa, M. L., De Almeida, S. F. M., & Rezende, M. C. (2005). Hygrothermal effects on dynamic mechanical analysis and fracture behavior of polymeric composites. Materials Research, 8(3), 335–340. https://doi.org/10.1590/S1516-14392005000300019
  • D792 − 20. (2013). Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International.
  • Demircan, O., Yilmaz, C., Kocaman, E. S., Tang, S., Hamada, H., & Yildiz, M. (2015). Effect of fibre densities on impact properties of biaxial warp-knitted textile composites. Journal of Reinforced Plastics & Composites, 34(16), 1287–1297. https://doi.org/10.1177/0731684415577985
  • Ebrahimnezhad Khaljiri, H., Eslami-Farsani, R., Akbarzadeh, E. (2020). Effect of interlayer hybridization of carbon, Kevlar, and glass fibres with oxidized polyacrylonitrile fibres on the mechanical behaviors of hybrid composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234:1823–1835. https://doi.org/10.1177/0954406219897935.
  • Guo, R., Xian, G., Li, C., Hong, B., Huang, X., Xin, M., & Huang, S. (2021). Water uptake and interfacial shear strength of carbon/glass fibre hybrid composite rods under hygrothermal environments: Effects of hybrid modes. Polymer Degradation & Stability, 193, 109723. https://doi.org/10.1016/j.polymdegradstab.2021.109723
  • Gustin, J., Joneson, A., Mahinfalah, M., & Stone, J. (2005). Low velocity impact of combination Kevlar/carbon fibre sandwich composites. Composite Structures, 69(4), 396–406. https://doi.org/10.1016/j.compstruct.2004.07.020
  • Harris, C. E., Starnes, J. H., & Shuart, M. J. (2002). Design and manufacturing of aerospace composite structures, state-of-the-art assessment. Journal of Aircraft, 39(4), 545–560. https://doi.org/10.2514/2.2992
  • Imieli, K., & Guillaumat, L. (2004). The effect of water immersion ageing on low-velocity impact behaviour of woven aramid–glass fibre/epoxy composites. Composites Science and Technology, 64(13–14), 2271–2278. https://doi.org/10.1016/j.compscitech.2004.03.002
  • Jia, C., Yuan, C., Ma, Z., Du, Y., Liu, L., & Huang, Y. (2019). Improving the mechanical and surface properties of aramid fibre by grafting with 1,4-Dichlorobutane under supercritical carbon dioxide. Materials, 12(22), 12. https://doi.org/10.3390/ma12223766
  • Kaustav Ghosh, G. K. K. C. Y. (2018). Free vibrational analysis of magneto-rheological aircraft rib structure. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 8(2), 837–842. https://doi.org/10.24247/ijmperdapr201895
  • Khazaie, M., Eslami-Farsani, R., & Saeedi, A. (2018). Evaluation of repeated high velocity impact on polymer-based composites reinforced with basalt and Kevlar fibres. Materials Today Communications, 17, 76–81. https://doi.org/10.1016/j.mtcomm.2018.08.016
  • Kretsis, G. (1987). A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites, 18(1), 13–23. https://doi.org/10.1016/0010-4361(87)90003-6
  • Mallick, P. K. (2007). Fibre- reinforced composites materials, manufacturing and design (3d ed.). CRC Press Taylor & Francis Group. https://doi.org/10.1201/9781420005981
  • Materials, C. (2020). Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. 1, 1–20. https://doi.org/10.1520/D5229
  • Moudood, A., Rahman, A., Khanlou, H. M., Hall, W., Öchsner, A., & Francucci, G. (2019). Environmental effects on the durability and the mechanical performance of flax fibre/bio-epoxy composites. Composites Part B: Engineering, 171, 284–293. Elsevier Ltd; 2019. https://doi.org/10.1016/j.compositesb.2019.05.032
  • Murat, B., Atas, C., Aktas, M., & Karakuzu, R. (2009). Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates. Composite Structures, 91(3), 318–323. https://doi.org/10.1016/j.compstruct.2009.05.010
  • O’Donnell, J., & Chalivendra, V. (2021). Multi-functional glass/carbon fibres hybrid inter/intra laminated composites. Composites Part C Open Access, 4, 100121. https://doi.org/10.1016/j.jcomc.2021.100121
  • Padmaraj, N. H., Vijaya, K. M., & Dayananda, P. (2021). Experimental investigation on fatigue behavior of glass/epoxy quasi-isotropic laminate composites under different ageing conditions. International Journal of Fatigue, 143, 105992. https://doi.org/10.1016/j.ijfatigue.2020.105992
  • Pai, Y., Kini, M. V., & Engineering, A. (2021). Effect of aramid fabric orientation angle on the mechanical characteristics of basalt-aramid/epoxy hybrid interply composites. Materials Research, 24(5), Effect. https://doi.org/10.1590/1980-5373-MR-2021-0209
  • Pai, Y., Pai, D. K., Kini, M. V. (2021). Evaluation of the mechanical characteristics of hygrothermally aged 2-D basalt-aramid/epoxy hybrid interply composites. Journal of Physics: Conference Series. 2070. https://doi.org/10.1088/1742-6596/2070/1/012234.
  • Pai, Y., Pai, K. D., Kini, M. V. (2021). A review on low velocity impact study of hybrid polymer composites. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.390.
  • Pai, Y., Pai, K. D., Kini, M. V., & Wong, E. (2022). Experimental investigations on the moisture absorption and mechanical behavior of basalt-aramid/epoxy hybrid interply composites under different ageing environments. Cogent Engineering, 9(1), 0–20. https://doi.org/10.1080/23311916.2022.2080354
  • Pavan, A., Dayananda, P., Vijaya, K. M., Hegde, S., & Narampady Hosagade, P. (2019). Influence of seawater absorption on vibrational and tensile characteristics of quasi-isotropic glass/epoxy composites. Journal of Materials Research and Technology, 8(1), 1427–1433. https://doi.org/10.1016/j.jmrt.2018.10.008
  • Pegoretti, A., Fabbri, E., Migliaresi, C., & Pilati, F. (2004). Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: Tensile and impact properties. Polymer International Polym Int, 53(9), 1290–1297. https://doi.org/10.1002/pi.1514
  • Pérez-Pacheco, E., Cauich-Cupul, J. I., Valadez-González, A., & Herrera-Franco, P. J. (2013). Effect of moisture absorption on the mechanical behavior of carbon fibre/epoxy matrix composites. Journal of Materials Science, 48(5), 1873–1882. https://doi.org/10.1007/s10853-012-6947-4
  • Rajesh, M., & Pitchaimani, J. (2017). Mechanical properties of natural fibre braided yarn woven composite: Comparison with conventional yarn woven composite. Journal of Bionic Engineering, 14(1), 141–150. https://doi.org/10.1016/S1672-6529(16)60385-2
  • Ray, B. C. (2004). Effects of crosshead velocity and sub-zero temperature on mechanical behavior of hygrothermally conditioned glass fibre reinforced epoxy composites. Materials Science and Engineering: A, 379(1–2), 39–44. https://doi.org/10.1016/j.msea.2003.11.031
  • Saha, S., & Bal, S. (2018). Long term hydrothermal effect on the mechanical and thermo-mechanical properties of carbon nanofibre doped epoxy composites. Journal of Polymer Engineering, 38(3), 251–261. https://doi.org/10.1515/polyeng-2017-0037
  • Sarasini, F., & Santulli, C. (2013). Non-destructive testing (NDT) of natural fibre composites: Acoustic emission technique. Woodhead Publishing Limited. https://doi.org/10.1533/9780857099228.3.273
  • Shaid, A., Ahsan, M., & Zoynal, M. (2020). Experimental investigation of the mechanical and water absorption properties on fibre stacking sequence and orientation of jute/carbon epoxy hybrid composites. Integrative Medicine Research, 9(5), 10970–10981. https://doi.org/10.1016/j.jmrt.2020.07.079
  • Shetty, K., Bojja, R., & Srihari, S. (2020). Effect of hygrothermal aging on the mechanical properties of IMA/M21E aircraft-grade CFRP composite. Advanced Composites Letters, 29, 1–9. https://doi.org/10.1177/2633366X20926520
  • Singh, T. J., Samanta, S. (2015). Characterization of kevlar fibre and its composites: A review. Materials Today: Proceedings. 2, 1381–1387. https://doi.org/10.1016/j.matpr.2015.07.057.
  • Taraghi, I., Fereidoon, A., & Taheri-Behrooz, F. (2014). Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures. Materials & Design, 53, 152–158. https://doi.org/10.1016/j.matdes.2013.06.051
  • VanLandingham, M. R., Eduljee, R. F., & Gillespie, J. W. (1999). Moisture diffusion in epoxy systems. Journal of Applied Polymer Science, 71(5), 787–798. https://doi.org/10.1002/(SICI)1097-4628(19990131)71:5<787:AID-APP12>3.0.CO;2-A
  • Vasiliev, V. V., & Morozov, E. V. (2007). Mechanics of laminates. In Advanced Mechanics of Composite Materials (2nd ed.). (pp. 255–320). Elsevier Science Ltd. 9780080453729.https://doi.org/10.1016/B978-008045372-9/50005-1
  • Vasudevan, A., Senthil Kumaran, S., Naresh, K., & Velmurugan, R. (2020). Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. International Journal of Crashworthiness, 25(1), 9–23. https://doi.org/10.1080/13588265.2018.1511234
  • Vieille, B., Aucher, J., & Taleb, L. (2012). Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions. Materials & Design, 35, 707–719. https://doi.org/10.1016/j.matdes.2011.10.037
  • Wang, X., Hu, B., Feng, Y., Liang, F., Mo, J., Xiong, J., & Qiu, Y. (2008). Low velocity impact properties of 3D woven basalt/aramid hybrid composites. Composites Science and Technology, 68(2), 444–450. https://doi.org/10.1016/j.compscitech.2007.06.016
  • Wang, M., Xu, X., Ji, J., Yang, Y., Shen, J., & Ye, M. (2016). The hygrothermal aging process and mechanism of the novolac epoxy resin. Composites Part B: Engineering, 107, 1–8. https://doi.org/10.1016/j.compositesb.2016.09.067
  • Yahaya, R., Jawaid, M., & Leman, Z. (2014). Mechanical performance of woven kenaf-Kevlar hybrid composites. Journal of Reinforced Plastics & Composites, 33(24), 2242–2254. https://doi.org/10.1177/0731684414559864
  • Ye, H. Z., Liu, X. Y., Kiran, G. B., Suman, K. N. S., Rao, N. M., & Rao, R. U. M. (2016). Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures. Industrial Robot: An International Journal, 5, 1–2. https://doi.org/10.1017/CBO9781107415324.004
  • Zai, B. A. (2018). Low-velocity impact characterization of fibre-reinforced composites with hygrothermal effect. Journal of Testing and Evaluation, 47(1), 350–360. . https://doi.org/10.1520/JTE20170620
  • Zanni-Deffarges, M. P., & Shanahan, M. E. R. (1995). Diffusion of water into an epoxy adhesive: Comparison between bulk behavior and adhesive joints. International Journal of Adhesion and Adhesives, 15(3), 137–142. https://doi.org/10.1016/0143-7496(95)91624-F
  • Zhong, Y., Cheng, M., Zhang, X., Hu, H., Cao, D., & Li, S. (2019). Hygrothermal durability of glass and carbon fibre reinforced composites – a comparative study. Composite Structures, 211, 134–143. https://doi.org/10.1016/j.compstruct.2018.12.034
  • Zubair, M., & Pai, Y. (2019). Review on impact response of polymer composites. Journal of Mechanical Engineering Research and Developments, 42(4), 238–242. https://doi.org/10.26480/jmerd.04.2019.238.242