712
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

A bibliometric analysis on the relevancies of artificial neural networks (ANN) techniques in offshore engineering

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2241729 | Received 18 May 2023, Accepted 24 Jul 2023, Published online: 07 Aug 2023

References

  • Abbas, A. K., Bashikh, A. A., Abbas, H., & Mohammed, H. Q. (2019, September). Intelligent decisions to stop or mitigate lost circulation based on machine learning. Energy, 183, 1104–24. https://doi.org/10.1016/J.ENERGY.2019.07.020
  • Abbas, A. K., Rushdi, S., Alsaba, M., & Al Dushaishi, M. F. (2019). Drilling rate of penetration prediction of high-angled wells using artificial neural networks. Journal of Energy Resources Technology, 141(11). https://doi.org/10.1115/1.4043699
  • Abdelgawad, K., Elkatatny, S., Mousa, T., Mahmoud, M., and Patil, S. (2018 April, 23). Real time determination of rheological properties of spud drilling fluids using a hybrid artificial intelligence technique. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. (pp. 192257). https://doi.org/10.2118/192257-MS.
  • Agwu, O. E., Akpabio, J. U., Alabi, S. B., & Dosunmu, A. (2018, November). Settling velocity of drill cuttings in drilling fluids: A review of experimental, numerical simulations and artificial intelligence studies. Powder Technology, 339, 728–746. https://doi.org/10.1016/J.POWTEC.2018.08.064
  • Ahmadi, M. A., Ebadi, M., & Hosseini, S. M. (2014, January). Prediction breakthrough time of water coning in the fractured reservoirs by implementing low parameter support vector machine approach. Fuel, 117(PART A), 579–589. https://doi.org/10.1016/J.FUEL.2013.09.071
  • Ahmed, O. S., Adeniran, A. A., & Samsuri, A. (2019, January). Computational intelligence based prediction of drilling rate of penetration: A comparative study. Journal of Petroleum Science & Engineering, 172, 1–12. https://doi.org/10.1016/J.PETROL.2018.09.027
  • Ahmed, A. A., Elkatatny, S., Abdulraheem, A., and Mahmoud, M. (2017 October, 15). Application of artificial intelligence techniques in estimating oil recovery factor for water derive sandy reservoirs. SPE Kuwait Oil & Gas Show and Conference. (pp. D021S001R003). https://doi.org/10.2118/187621-MS.
  • Al-Anazi, A. F., & Gates, I. D. (2012, February). Support vector regression to predict porosity and permeability: Effect of sample size. Computers & Geosciences, 39, 64–76. https://doi.org/10.1016/J.CAGEO.2011.06.011
  • Al-Azani, K., Elkatatny, S., Abdulraheem, A., Mahmoud, M., and Al-Shehri, D. (2018 April, 23). Real time prediction of the rheological properties of oil-based drilling fluids using artificial neural networks,” SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. (pp. 192199). https://doi.org/10.2118/192199-MS.
  • Al-Baiyat, I. and Heinze, L. (2012 December, 10). Implementing artificial neural networks and support vector machines in stuck pipe prediction. SPE Kuwait International Petroleum Conference and Exhibition. (pp. 163370). https://doi.org/10.2118/163370-MS.
  • Aleardi, M., & Ciabarri, F. (2016, October). Assessment of different approaches to rock-physics modeling: A case study from offshore Nile Delta. Geophysics, 82(1), MR15–MR25. https://doi.org/10.1190/geo2016-0194.1
  • Alkinani, H. H., Al-Hameedi, A. T., Dunn-Norman, S., Flori, R. E., Alsaba, M. T., and Amer, A. S. (2019 March, 18). Applications of artificial neural networks in the petroleum industry: A review. SPE Middle East Oil and Gas Show and Conference. (pp. D032S063R002). https://doi.org/10.2118/195072-MS.
  • Alsaihati, A., Elkatatny, S., Mahmoud, A. A., & Abdulraheem, A. (2020, August). Use of machine learning and data analytics to detect downhole abnormalities while drilling horizontal wells, with real case study. Journal of Energy Resources Technology, 143(4), https://doi.org/10.1115/1.4048070
  • Aminzadeh, F., & DeGroot, P. (2005). A neural networks based seismic object detection technique. SEG Technical Program Expanded, Society of Exploration Geophysicists, 775–778. https://doi.org/10.1190/1.2144442
  • Anemangely, M., Ramezanzadeh, A., Tokhmechi, B., Molaghab, A., & Mohammadian, A. (2018, August). Drilling rate prediction from petrophysical logs and mud logging data using an optimized multilayer perceptron neural network. Journal of Geophysics and Engineering, 15(4), 1146–1159. https://doi.org/10.1088/1742-2140/aaac5d
  • Ashhab, M. S. S. (2008, November). Optimization and modeling of a photovoltaic solar integrated system by neural networks. Energy Conversion & Management, 49(11), 3349–3355. https://doi.org/10.1016/J.ENCONMAN.2007.10.036
  • Barton, D., Woetzel, J., Seong, J., and Tian, Q. (2017). Artificial intelligence: Implications for China.
  • Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31. https://doi.org/10.1016/s0167-7012(00)00201-3
  • Bello, O., Holzmann, J., Yaqoob, T., & Teodoriu, C. (2015). Application of artificial intelligence methods in drilling system design and operations: A review of the state of the art. Journal of Artificial Intelligence and Soft Computing Research, 5(2), 121–139. https://doi.org/10.1515/jaiscr-2015-0024
  • Bello, O., Teodoriu, C., Yaqoob, T., Oppelt, J., Holzmann, J., and Obiwanne, A. (2016 August, 2). Application of artificial intelligence techniques in drilling system design and operations: A state of the art review and future research pathways,” SPE Nigeria Annual International Conference and Exhibition. (pp. 184320). https://doi.org/10.2118/184320-MS.
  • Bhattacharya, S., Ghahfarokhi, P. K., Carr, T. R., & Pantaleone, S. (2019, May). Application of predictive data analytics to model daily hydrocarbon production using petrophysical, geomechanical, fiber-optic, completions, and surface data: A case study from the Marcellus Shale, North America. Journal of Petroleum Science & Engineering, 176, 702–715. https://doi.org/10.1016/J.PETROL.2019.01.013
  • Bolandi, V., Kadkhodaie, A., & Farzi, R. (2017, March). Analyzing organic richness of source rocks from well log data by using SVM and ANN classifiers: A case study from the Kazhdumi formation, the Persian Gulf basin, offshore Iran. Journal of Petroleum Science & Engineering, 151, 224–234. https://doi.org/10.1016/J.PETROL.2017.01.003
  • Casey, J. G., Collier-Oxandale, A., & Hannigan, M. (2019, March). Performance of artificial neural networks and linear models to quantify 4 trace gas species in an oil and gas production region with low-cost sensors. Sensors and Actuators B, Chemical, 283, 504–514. https://doi.org/10.1016/J.SNB.2018.12.049
  • Castro, A., Carballo, R., Iglesias, G., & Rabuñal, J. R. (2014, October). Performance of artificial neural networks in nearshore wave power prediction. Applied Soft Computing, 23, 194–201. https://doi.org/10.1016/J.ASOC.2014.06.031
  • Cheng, C. T., Xie, J. X., Chau, K. W., & Layeghifard, M. (2008, October). A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction. Journal of Hydrology, 361(1–2), 118–130. https://doi.org/10.1016/J.JHYDROL.2008.07.040
  • Cunha, A., Pochet, A., Lopes, H., & Gattass, M. (2020, February). Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data. Computers & Geosciences, 135, 104344. https://doi.org/10.1016/J.CAGEO.2019.104344
  • Das, V., Pollack, A., Wollner, U., & Mukerji, T. (2019). Convolutional neural network for seismic impedance inversion. https://doi.org/10.1190/geo2018-0838.1
  • Dellana, S. A., & West, D. (2009, January). Predictive modeling for wastewater applications: Linear and nonlinear approaches. Environmental Modelling & Software, 24(1), 96–106. https://doi.org/10.1016/J.ENVSOFT.2008.06.002
  • Durodola, J. F., Li, N., Ramachandra, S., & Thite, A. N. (2017, June). A pattern recognition artificial neural network method for random fatigue loading life prediction. International Journal of Fatigue, 99, 55–67. https://doi.org/10.1016/J.IJFATIGUE.2017.02.003
  • El-Abbasy, M. S., Senouci, A., Zayed, T., Mirahadi, F., & Parvizsedghy, L. (2014, September). Artificial neural network models for predicting condition of offshore oil and gas pipelines. Automation in Construction, 45, 50–65. https://doi.org/10.1016/J.AUTCON.2014.05.003
  • Elkatatny, S., Mahmoud, M., Tariq, Z., & Abdulraheem, A. (2018). New insights into the prediction of heterogeneous carbonate reservoir permeability from well logs using artificial intelligence network. Neural Computing & Applications, 30(9), 2673–2683. https://doi.org/10.1007/s00521-017-2850-x
  • Elkatatny, S., Tariq, Z., & Mahmoud, M. (2016). Real time prediction of drilling fluid rheological properties using artificial neural networks visible mathematical model (white box). Journal of Petroleum Science & Engineering, 146, 1202–1210. https://doi.org/10.1016/j.petrol.2016.08.021
  • El-Sebakhy, E. A. (2009, February). Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. Journal of Petroleum Science & Engineering, 64(1–4), 25–34. https://doi.org/10.1016/J.PETROL.2008.12.006
  • Flores, P., Tapia, A., & Tapia, G. (2005). Application of a control algorithm for wind speed prediction and active power generation. Renew Energy, 30(4), 523–536. https://doi.org/10.1016/j.renene.2004.07.015
  • Ghiasi, M. M., Bahadori, A., & Zendehboudi, S. (2014, January). Estimation of the water content of natural gas dried by solid calcium chloride dehydrator units. Fuel, 117(PART A), 33–42. https://doi.org/10.1016/J.FUEL.2013.09.086
  • Ghiasi-Freez, J., Kadkhodaie-Ilkhchi, A., & Ziaii, M. (2012, September). Improving the accuracy of flow units prediction through two committee machine models: An example from the South Pars Gas Field, Persian Gulf Basin, Iran. Computers & Geosciences, 46, 10–23. https://doi.org/10.1016/J.CAGEO.2012.04.006
  • Guéguen, C., Cuss, C. W., & Cho, S. (2016, June). Snowpack deposition of trace elements in the Athabasca oil sands region, Canada. Chemosphere, 153, 447–454. https://doi.org/10.1016/J.CHEMOSPHERE.2016.03.020
  • Günaydin, K. (2008, October). The estimation of monthly mean significant wave heights by using artificial neural network and regression methods. Ocean Engineering, 35(14–15), 1406–1415. https://doi.org/10.1016/J.OCEANENG.2008.07.008
  • Halali, M. A., Azari, V., Arabloo, M., Mohammadi, A. H., & Bahadori, A. (2016, January). Application of a radial basis function neural network to estimate pressure gradient in water–oil pipelines. Journal of the Taiwan Institute of Chemical Engineers, 58, 189–202. https://doi.org/10.1016/J.JTICE.2015.06.042
  • Harish, N., Mandal, S., Rao, S., & Patil, S. G. (2015). Particle swarm optimization based support vector machine for damage level prediction of non-reshaped berm breakwater. Applied Soft Computing, 27, 313–321. https://doi.org/10.1016/J.ASOC.2014.10.041
  • Hassanvand, M., Moradi, S., Fattahi, M., Zargar, G., & Kamari, M. (2018, December). Estimation of rock uniaxial compressive strength for an Iranian carbonate oil reservoir: Modeling vs. artificial neural network application. Petroleum Research, 3(4), 336–345. https://doi.org/10.1016/J.PTLRS.2018.08.004
  • Hoffimann, J., Mao, Y., Wesley, A., and Taylor, A. (2018 Sepetember, 24). Sequence mining and pattern analysis in drilling reports with deep natural language processing,” SPE Annual Technical Conference and Exhibition. (pp. D031S033R004). https://doi.org/10.2118/191505-MS.
  • Hong, Y. Y., & Satriani, T. R. A. (2020, October). Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network. Energy, 209, 118441. https://doi.org/10.1016/J.ENERGY.2020.118441
  • Huang, K.-Y., Pissarenko, J.-D., Chen, K.-J., Lai, H.-L., and Don, A.-J. (2006 October, 1). Neural network for parameters determination and seismic pattern detection. Proceedings of the 2006 SEG International Exposition and Annual Meeting, New Orleans, Louisiana (pp. 2006–2285).
  • Huang, Z., Shimeld, J., Williamson, M., & Katsubet, J. (1996). Permeability prediction with artificial neural network modeling in the venture gas field, offshore eastern Canada. Geophysics, 61(2), 422–436. https://doi.org/10.1190/1.1443970
  • Iturrarán-Viveros, U., & Parra, J. O. (2014, August). Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. Journal of Applied Geophysics, 107, 45–54. https://doi.org/10.1016/J.JAPPGEO.2014.05.010
  • Jahanbakhshi, R., Keshavarzi, R., Aliyari Shoorehdeli, M., & Emamzadeh, A. (2012, November). Intelligent prediction of differential pipe sticking by support vector machine compared with conventional artificial neural networks: An example of Iranian offshore oil fields. SPE Drilling & Completion, 27(4), 586–595. https://doi.org/10.2118/163062-PA
  • Jahanbakhshi, R., Keshavarzi, R., and Jafarnezhad, A. (2012 June. 24). Real-time prediction of rate of penetration during drilling operation in oil and gas wells. Proceedings of the 46th U.S. Rock Mechanics/Geomechanics Symposium, Chicago, Illinois (pp. 212–244).
  • Jain, P., Deo, M. C., Latha, G., & Rajendran, V. (2011, January). Real time wave forecasting using wind time history and numerical model. Ocean Model, 36(1–2), 26–39. https://doi.org/10.1016/J.OCEMOD.2010.07.006
  • Jamshidian, M., Hadian, M., Zadeh, M. M., Kazempoor, Z., Bazargan, P., & Salehi, H. (2015, May). Prediction of free flowing porosity and permeability based on conventional well logging data using artificial neural networks optimized by Imperialist competitive algorithm – a case study in the South Pars gas field. Journal of Natural Gas Science & Engineering, 24, 89–98. https://doi.org/10.1016/J.JNGSE.2015.02.026
  • Kadkhodaie-Ilkhchi, A., Rezaee, M. R., Rahimpour-Bonab, H., & Chehrazi, A. (2009, December). Petrophysical data prediction from seismic attributes using committee fuzzy inference system. Computers & Geosciences, 35(12), 2314–2330. https://doi.org/10.1016/J.CAGEO.2009.04.010
  • Kamari, A., Gharagheizi, F., Bahadori, A., & Mohammadi, A. H. (2014, March). Rigorous modeling for prediction of barium sulfate (barite) deposition in oilfield brines. Fluid Phase Equilibria, 366, 117–126. https://doi.org/10.1016/J.FLUID.2013.12.023
  • Khamehchi, E., Kivi, I. R., & Akbari, M. (2014, November). A novel approach to sand production prediction using artificial intelligence. Journal of Petroleum Science & Engineering, 123, 147–154. https://doi.org/10.1016/J.PETROL.2014.07.033
  • Kisvari, A., Lin, Z., & Liu, X. (2021, January). Wind power forecasting – a data-driven method along with gated recurrent neural network. Renewable Energy, 163, 1895–1909. https://doi.org/10.1016/J.RENENE.2020.10.119
  • Kumar, N. K., Savitha, R., & Al Mamun, A. (2017, January). Regional ocean wave height prediction using sequential learning neural networks. Ocean Engineering, 129, 605–612. https://doi.org/10.1016/J.OCEANENG.2016.10.033
  • Layouni, M., Hamdi, M. S., & Tahar, S. (2017, March). Detection and sizing of metal-loss defects in oil and gas pipelines using pattern-adapted wavelets and machine learning. Applied Soft Computing, 52, 247–261. https://doi.org/10.1016/J.ASOC.2016.10.040
  • Li, Q., Mou, L., Liu, Q., Wang, Y., & Zhu, X. X. (2018). HSF-Net: Multiscale deep feature embedding for ship detection in optical remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 56(12), 7147–7161. https://doi.org/10.1109/TGRS.2018.2848901
  • Lind, Y. B. and Kabirova, A. R. (2014 October, 14) Artificial neural networks in drilling troubles prediction. SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition. (pp. 171274). https://doi.org/10.2118/171274-MS.
  • Lin, Z., & Liu, X. (2020, June). Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network. Energy, 201, 117693. https://doi.org/10.1016/J.ENERGY.2020.117693
  • Lu, Y., Sun, L., Zhang, X., Feng, F., Kang, J., & Fu, G. (2018, May). Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach. Applied Ocean Research, 74, 69–79. https://doi.org/10.1016/J.APOR.2018.02.016
  • Mahjoobi, J., & Adeli Mosabbeb, E. (2009, April). Prediction of significant wave height using regressive support vector machines. Ocean Engineering, 36(5), 339–347. https://doi.org/10.1016/J.OCEANENG.2009.01.001
  • Mahjoobi, J., Etemad Shahidi, A., & Kazeminezhad, M. H. (2008, February). Hindcasting of wave parameters using different soft computing methods. Applied Ocean Research, 30(1), 28–36. https://doi.org/10.1016/J.APOR.2008.03.002
  • Mahmoud, A. A., Elkatatny, S., Chen, W., & Abdulraheem, A. (2019). Estimation of oil recovery factor for water drive sandy reservoirs through applications of artificial intelligence. Energies, 12(19). https://doi.org/10.3390/en12193671
  • Mandal, S., & Prabaharan, N. (2006, July). Ocean wave forecasting using recurrent neural networks. Ocean Engineering, 33(10), 1401–1410. https://doi.org/10.1016/J.OCEANENG.2005.08.007
  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/978-3-030-01370-7_61
  • Mohamadian, N., Ghorbani, H., Wood, D. A., Mehrad, M., Davoodi, S., Rashidi, S., Soleimanian, A., & Shahvand, A. K. (2021, January). A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning. Journal of Petroleum Science & Engineering, 196, 107811. https://doi.org/10.1016/J.PETROL.2020.107811
  • Mohamadi-Baghmolaei, M., Azin, R., Osfouri, S., Mohamadi-Baghmolaei, R., & Zarei, Z. (2015, October). Prediction of gas compressibility factor using intelligent models. Natural Gas Industry B, 2(4), 283–294. https://doi.org/10.1016/J.NGIB.2015.09.001
  • Mullen, M., Roundtree, R., & Barree, B. (2007). A composite determination of mechanical rock properties for stimulation design (what to do when you don’t have a sonic log). Society Petroleum Engineering Rocky Mountain Oil Gas Technology Symposium, 530–542. 2007. https://doi.org/10.2118/108139-ms
  • Neto, F. C., Gerônimo, T. M., Cruz, C. E. D., Aguiar, P. R., & Bianchi, E. E. C. (2013, January). Neural models for predicting hole diameters in drilling processes. Procedia CIRP, 12, 49–54. https://doi.org/10.1016/J.PROCIR.2013.09.010
  • Nieto, J., Janega, G., Batlai, B., & Martinez, H. (2018). An integrated approach to optimizing completions and protecting parent wells in the Montney Formation, N.E.B.C. Unconventional Resource Technology Conference, 2018(URTC 2018), 1–15. https://doi.org/10.15530/urtec-2018-2902707
  • Onalo, D., Adedigba, S., Khan, F., James, L. A., & Butt, S. (2018, November). Data driven model for sonic well log prediction. Journal of Petroleum Science & Engineering, 170, 1022–1037. https://doi.org/10.1016/J.PETROL.2018.06.072
  • Orrù, P. F., Zoccheddu, A., Sassu, L., Mattia, C., Cozza, R., & Arena, S. (2020). Machine learning approach using MLP and SVM algorithms for the fault prediction of a centrifugal pump in the oil and gas industry. Sustainability, 12(11). https://doi.org/10.3390/su12114776
  • Panja, P., Velasco, R., Pathak, M., & Deo, M. (2018, March). Application of artificial intelligence to forecast hydrocarbon production from shales. Petroleum, 4(1), 75–89. https://doi.org/10.1016/J.PETLM.2017.11.003
  • Parichatprecha, R., & Nimityongskul, P. (2009). Analysis of durability of high performance concrete using artificial neural networks. Construction and Building Materials, 23(2), 910–917. https://doi.org/10.1016/j.conbuildmat.2008.04.015
  • Patil, S. G., Mandal, S., & Hegde, A. V. (2012, March). Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater. Advances in Engineering Software, 45(1), 203–212. https://doi.org/10.1016/J.ADVENGSOFT.2011.09.026
  • Patil, S. G., Mandal, S., Hegde, A. V., & Alavandar, S. (2011, January). Neuro-fuzzy based approach for wave transmission prediction of horizontally interlaced multilayer moored floating pipe breakwater. Ocean Engineering, 38(1), 186–196. https://doi.org/10.1016/J.OCEANENG.2010.10.009
  • Pham, N., Fomel, S., & Dunlap, D. (2019, March). Automatic channel detection using deep learning. Interpretation, 7(3), SE43–SE50. https://doi.org/10.1190/INT-2018-0202.1
  • Pochet, A., Diniz, P. H. B., Lopes, H., & Gattass, M. (2019). Seismic fault detection using convolutional neural networks trained on synthetic poststacked amplitude maps. IEEE Geoscience & Remote Sensing Letters, 16(3), 352–356. https://doi.org/10.1109/LGRS.2018.2875836
  • Pu, Y., & Mesbahi, E. (2006, July). Application of artificial neural networks to evaluation of ultimate strength of steel panels. Engineering Structures, 28(8), 1190–1196. https://doi.org/10.1016/J.ENGSTRUCT.2005.12.009
  • Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (2001, July). Neural network design for engineering applications. Computers & Structures, 79(17), 1541–1552. https://doi.org/10.1016/S0045-7949(01)00039-6
  • Rashidi, M. and Asadi, A. (2018 June, 17). An artificial intelligence approach in estimation of formation pore pressure by critical drilling data. Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington (pp. 1098–2018).
  • Rashidi, M., Hajipour, M., and Asadi, A. (2018 June, 17). Correlation between static and dynamic elastic modulus of limestone formations using artificial neural networks. Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, Washington (pp. 218–247).
  • Ross, C. (2017 Sepetember, 24). Improving resolution and clarity with neural networks. Proceedings of the 2017 SEG International Exposition and Annual Meeting, Houston, Texas (pp. 2017–17359888).
  • Senouci, A., Elabbasy, M., Elwakil, E., Abdrabou, B., & Zayed, T. (2014, March). A model for predicting failure of oil pipelines. Structure and Infrastructure Engineering, 10(3), 375–387. https://doi.org/10.1080/15732479.2012.756918
  • Shafiee, M., Brennan, F., & Espinosa, I. A. (2016). A parametric whole life cost model for offshore wind farms. The International Journal of Life Cycle Assessment, 21(7), 961–975. https://doi.org/10.1007/s11367-016-1075-z
  • Shaik, N. B., Pedapati, S. R., Taqvi, S. A., Othman, A. R., & Dzubir, F. A. (2020). A feed-forward back propagation neural network approach to predict the life condition of crude oil pipeline. Processes, 8(6). https://doi.org/10.3390/pr8060661
  • Shi, X., Liu, G., Gong, X., Zhang, J., Wang, J., & Zhang, H. (2016). An efficient approach for real-time prediction of rate of penetration in offshore drilling. Mathematical Problems in Engineering, 2016, 1–13. https://doi.org/10.1155/2016/3575380
  • Shojaei, K. (2015). Leader–follower formation control of underactuated autonomous marine surface vehicles with limited torque. Ocean Engineering, 105, 196–205. https://doi.org/10.1016/j.oceaneng.2015.06.026
  • Shojaei, K., & Dolatshahi, M. (2016). Line-of-sight target tracking control of underactuated autonomous underwater vehicles. Ocean Engineering, 133(November), 244–252. 2017. https://doi.org/10.1016/j.oceaneng.2017.02.007
  • Veeken, P. C. H., Priezzhev, I. I., Shmaryan, L. E., Shteyn, Y. I., Barkov, A. Y., & Ampilov, Y. P. (2009). Nonlinear multitrace genetic inversion applied on seismic data across the Shtokman field, offshore northern Russia. Geophysics, 74(6). https://doi.org/10.1190/1.3223314
  • Waltman, L., & van Eck, N. J. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
  • Wang, L., & Thi, M. S.-N. (2013). Stability enhancement of a PMSG-Based offshore wind farm fed to a multi-machine system through an LCC-HVDC link. IEEE Transactions on Power Systems, 28(3), 3327–3334. https://doi.org/10.1109/TPWRS.2013.2243765
  • Zhao, T., Jayaram, V., Roy, A., & Marfurt, K. J. (2015). A comparison of classification techniques for seismic facies recognition. Interpretation, 3(4), SAE29–SAE58. https://doi.org/10.1190/INT-2015-0044.1
  • Zheng, Y., Zhang, Q., Yusifov, A., & Shi, Y. (2019, July). Applications of supervised deep learning for seismic interpretation and inversion. The Leading Edge, 38(7), 526–533. https://doi.org/10.1190/tle38070526.1
  • Zou, Z., & Shi, Z. (2016). Ship detection in spaceborne optical image with SVD networks. IEEE Transactions on Geoscience and Remote Sensing: A Publication of the IEEE Geoscience and Remote Sensing Society, 54(10), 5832–5845. https://doi.org/10.1109/TGRS.2016.2572736