2,405
Views
1
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Air quality analysis and PM2.5 modelling using machine learning techniques: A study of Hyderabad city in India

, , , , ORCID Icon, & show all
Article: 2243743 | Received 08 Feb 2023, Accepted 29 Jul 2023, Published online: 13 Aug 2023

References

  • Analitis, A., Barratt, B., Green, D., Beddows, A., Samoli, E., Schwartz, J., & Katsouyanni, K. (2020). Prediction of PM2.5 concentrations at the locations of monitoring sites measuring PM10 and NOx, using generalized additive models and machine learning methods: A case study in London. Atmospheric Environment, 240(June), 117757. https://doi.org/10.1016/j.atmosenv.2020.117757
  • Athanasiadis, I. N., Kaburlasos, V. G., Mitkas, P. A., & Petridis, V. (2003) Applying machine learning techniques on air quality data for real-time decision support. In: First international NAISO symposium on Information Technologies in Environmental Engineering (ITEE’2003), Gdansk, Poland.
  • Baccarelli, A. A., Zheng, Y., Zhang, X., Chang, D., Liu, L., Wolf, K. R., Zhang, Z., McCracken, J. P., Díaz, A., Bertazzi, P. A., Schwartz, J., Wang, S., Kang, C.-M., Koutrakis, P., & Hou, L. (2014). Air pollution exposure and lung function in highly exposed subjects in Beijing,China: A repeated-measure study. Particle and Fibre Toxicology, 11(1), 51. https://doi.org/10.1186/s12989-014-0051-7
  • Caselli, M., Trizio, L., de Gennaro, G., & Ielpo, P. (2009). A simple feedforward neural network for the pm 10 forecasting: Comparison with a radial basis function network and a multivariate linear regression model. Water, Air, and Soil Pollution, 201(1–4), 365. https://doi.org/10.1007/s11270-008-9950-2
  • Chaloulakou, A., Kassomenos, P., Spyrellis, N., Demokritou, P., & Koutrakis, P. (2003). Measurements of pm10 and PM2.5 particle concentrations in Athens, Greece. Atmospheric Environment, 37(5), 649. https://doi.org/10.1016/S1352-2310(02)00898-1
  • Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin, R. & Murray, C. J. L. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases study 2015. Lancet, 389(10082), 1907–23. https://doi.org/10.1016/S0140-6736(17)30505-6
  • Das, K., Chatterjee, N. D., Jana, D., & Bhattacharya, R. J. (2023). Application of land-use regression model with regularization algorithm to assess PM2.5 and PM10 concentration and health risk in Kolkata Metropolitan. Urban Climate, 49, 101473. https://doi.org/10.1016/j.uclim.2023.101473
  • De Vito, L., Chatterton, T., Namdeo, A., Nagendra, S., Gulia, S., Goyal, S., Bell, M., Goodman, P., Longhurst, J., Hayes, E., Kumar, R., Sethi, V., Sengupta, B., Ramadurai, G., Majmuder, S., Menon, J. S., Turamari, M. N., & Barnes, J. (2018). Air pollution in Delhi: A review of past and current policy approaches. WIT Transactions on Ecology and the Environment, 230, 441–451. https://doi.org/10.2495/AIR180411
  • Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., & Wang, J. (2015). Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107, 118–128. https://doi.org/10.1016/j.atmosenv.2015.02.030
  • Goudarzi, G., Hopke, P. K., & Yazdani, M. (2021a). Forecasting PM2.5 concentration using artificial neural network and its health effects in Ahvaz. Iran, Chemosphere, 283, 131285. https://doi.org/10.1016/j.chemosphere.2021.131285
  • Goudarzi, G., Hopke, P. K., & Yazdani, M. (2021b). Forecasting PM2.5 concentration using artificial neural network and its health effects in Ahvaz, Iran. Chemosphere, 283(June), 131285. https://doi.org/10.1016/j.chemosphere.2021.131285
  • Gregorio, J., Gouveia-Caridade, C., & Caridade, P. J. S. B. (2022). Modeling PM2.5 and PM10 using a Robust simplified linear regression machine learning algorithm. Atmosphere, 13(8), 1334. https://doi.org/10.3390/atmos13081334
  • Grell, G., Peckham, S., Schmitz, R., McKeen, S., Frost, G., Skamarock, W., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39(37), 6957–6975. https://doi.org/10.1016/j.atmosenv.2005.04.027
  • Gronlund, C. J., Humbert, S., Shaked, S., O’Neill, M. S., & Jolliet, O. (2015). Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Quality, Atmosphere, & Health, 8(1), 29e46. https://doi.org/10.1007/s11869-014-0283-6
  • Gulia, S., Nagendra, S. M. S., Barnes, J., & Khare, M. (2018). Urban local air quality management framework for non-attainment areas in Indian cities. Science of the Total Environment–1318.
  • Huang, Y., Wu, Y., & Zhang, W. (2020). Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19. Chaos, Solitons& Fractals, 139, 110041. https://doi.org/10.1016/j.chaos.2020.110041
  • IQAir, 2020. World air quality report. 2020 World Air Qual. Rep. 1–35.
  • Jung, C.-R., Hwang, B.-F., & Chen, W.-T. (2015). Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2. 5 concentrations in Taiwan from 2005 to 2015. Environmental Pollution, 237(1), 1000–1010. https://doi.org/10.1016/j.envpol.2017.11.016
  • Kapoor, M. (2017). Managing ambient air quality using ornamental plants-an alternative approach. Universal Journal of Plant Science, 5(1), 1–9. https://doi.org/10.13189/ujps.2017.050101
  • Kim, E., Park, H., Hong, Y. C., Ha, M., Kim, Y., Kim, B. N., Kim, Y., Roh, Y. M., Lee, B. E., Ryu, J. M., Kim, B. M., & Ha, E. H. (2014). Prenatal exposure to PM10 and NO2 and children’s neurodevelopment from birth to 2 months of age: Mothers and Children’s Environmental Health (MOCEH) study. Science of the Total Environment, 481, 439–445. https://doi.org/10.1016/j.scitotenv.2014.01.107
  • Kumar, A., & Gurjar, B. R. (2019). Low-cost sensors for air quality monitoring in developing countries – A critical view. Asian Journal of Water, Environment & Pollution, 16(2), 65–70. https://doi.org/10.3233/AJW190021
  • Kumar, S., Mishra, S., & Singh, S. K. (2020). A machine learning-based model to estimate PM2.5 concentration levels in Delhi’s atmosphere. Heliyon, 6(11), e05618. https://doi.org/10.1016/j.heliyon.2020.e05618
  • Lancet. (2020). Health and economic impact of air pollution in the states of India: The global burden of disease study 2019. The Lancet Planetary Health, 5(1), e25–e38. https://doi.org/10.1016/S2542-5196(20)30298-9
  • Le, V., Bui, C. T., & Cha, S. (2020). Spatiotemporal deep learning model for citywide air pollution interpolation and prediction. Proceedings of the 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea (South), 2020, 55–62. IEEE. https://doi.org/10.1109/BigComp48618.2020.00-99
  • Li, X., Peng, L., Hu, Y., Shao, J., & Chi, T. (2016). Deep learning architecture for air quality predictions. Environmental Science and Pollution Research, 23(22), 408–422. https://doi.org/10.1007/s11356-016-7812-9
  • Li, X., Song, H., Zhai, S., Lu, S., Kong, Y., Xia, H., & Zhao, H. (2019). Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological conditions (2015–2017). Environmental Pollution, 246, 11–18. https://doi.org/10.1016/j.envpol.2018.11.103
  • Liu, H., Yan, G., Duan, Z., & Chen, C. (2021). Intelligent modeling strategies for forecasting air quality time series: A review. Applied Soft Computing, 102, 106957. https://doi.org/10.1016/j.asoc.2020.106957
  • Ma, X., Chen, T., Ge, R., Cui, C., Xu, F., & Lv, Q. (2022). Time series-based PM2.5 concentration prediction in Jing-Jin-Ji area using machine learning algorithm models. Heliyon, 8(9), e10691. https://doi.org/10.1016/j.heliyon.2022.e10691
  • Nhat-Duc, H., & Van Duc, T. (2023). Comparison of histogram-based gradient boosting classification machine, random Forest, and deep convolutional neural network for pavement raveling severity classification. Automation in Construction, 148, 10476. https://doi.org/10.1016/j.autcon.2023.104767
  • Ni, X. Y., Huang, H., & Du, W. P. (2017). Relevance analysis and short-term prediction of PM2. 5 concentrations in Beijing based on multisource data. Atmospheric Environment, 150, 146–161. https://doi.org/10.1016/j.atmosenv.2016.11.054
  • Niska, H., Hiltunen, T., Karppinen, A., Ruuskanen, J., & Kolehmainen, M. (2004). Evolving the neural network model for forecasting air pollution time series. Engineering Applications of Artificial Intelligence, 17(2), 159. https://doi.org/10.1016/j.engappai.2004.02.002
  • Raju, L., Gandhimathi, R., Mathew, A., & Ramesh, S. T. (2022). Spatio-temporal modelling of particulate matter concentrations using satellite derived aerosol optical depth over coastal region of Chennai in India. Ecological Informatics, 69, 101681. https://doi.org/10.1016/j.ecoinf.2022.101681
  • Roychowdhury, A., & Somvanshi, A. (2020). Breathing space; How to track and report air pollution under the national clean air programme, center for science and environment.
  • Siew, Y. L., Ying Chin, L., Mah, P., & Wee, J. (2008). ARIMA and integrated ARFIMA models for forecasting air pollution index in shah alam. The Malaysian Journal of Analytical Sciences, 12.
  • Silva, R., West, J., Zhang, Y., Anenberg, S., Lamarque, J.-F. T., Shindell, D., Collins, W., Dalsøren, S., Faluvegi, G., Folberth, G., Horowitz, L., Nagashima, T., Naik, V., Rumbold, S., Skeie, R., Sudo, K., Takemura, T., Bergmann, D. & Szopa, S. (2013). Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 8(3), 2. https://doi.org/10.1088/1748-9326/8/3/034005
  • Singh, P., Gupta, K., & Rai, P. (2013). Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmospheric Environment, 80, 426–437. https://doi.org/10.1016/j.atmosenv.2013.08.023
  • Tsai, Y. T., Zeng, Y. R., & Chang, Y. S. (2018). Air pollution forecasting using rnn with lstm. Proceedings of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing 16th International Conference on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), Athens, Greece (pp. 1074–1079). https://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00178.
  • Varaprasad, V., Kanawade, V. P., & Narayana, A. C. (2021). Spatio-temporal variability of near-surface air pollutants at four distinct geographical locations in Andhra Pradesh State of India. Environmental Pollution, 268, 115899. https://doi.org/10.1016/j.envpol.2020.115899
  • Wang, Z., Wei, W., & Zheng, F. (2020). Effects of industrial air pollution on the technical efficiency of agricultural production: Evidence from china. Environmental Impact Assessment Review, 83, 106407. https://doi.org/10.1016/j.eiar.2020.106407
  • WHO. (2021). WHO “Global Air Quality Guidelines”. Organization. https://apps.who.int/iris/handle/10665/345329
  • World Health Organization. (2014). World Health Statistics. World Health Organization. Retrieved September 20, 2021, from https://apps.who.int/iris/bitstream/handle/10665/112738/9789240692671_eng.pdf;jsessionid=F52821DBF1D54D49FB35C09515956A25?sequence=1.
  • Zhang, P., Ma, W., Wen, F., Liu, L., Yang, L., Song, J., Wang, N., & Liu, Q. (2021). Estimating PM2.5 concentration using the machine learning GA-SVM method to improve the land use regression model in Shaanxi, China. Ecotoxicology and Environmental Safety, 225, 112772. https://doi.org/10.1016/j.ecoenv.2021.112772