1,260
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Utilization of waste marble powder as partial replacement of cement in engineered cementitious composite

, , , , , , , & show all
Article: 2243749 | Received 09 May 2023, Accepted 30 Jul 2023, Published online: 06 Aug 2023

References

  • Aliabdo, A. A., Abd Elmoaty, M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28–15. https://doi.org/10.1016/j.conbuildmat.2013.09.005
  • Al Martini, S., Sabouni, R., Khartabil, A., Wakjira, T. G., & Alam, M. S. (2023). Development and strength prediction of sustainable concrete having binary and ternary cementitious blends and incorporating recycled aggregates from demolished UAE buildings: Experimental and machine learning-based studies. Construction and Building Materials, 380, 131278. https://doi.org/10.1016/j.conbuildmat.2023.131278
  • Aravindh, M. D., Nakkeeran, G., Krishnaraj, L., & Arivusudar, N. (2022). Evaluation and optimization of lean waste in construction industry. Asian Journal of Civil Engineering, 23(5), 741–752. https://doi.org/10.1007/s42107-022-00453-9
  • Aruntaş, H. Y., Gürü, M., Dayı, M., & Tekin, İ. (2010). Utilization of waste marble dust as an additive in cement production. Materials & Design, 31(8), 4039–4042. https://doi.org/10.1016/j.matdes.2010.03.036
  • ASTM C150. (2020). C150/C150M-20 standard specification for Portland cement. ASTM.
  • ASTM C39. (2020). ASTM C39/C39M-99-standard test method for compressive strength of cylindrical concrete specimens. ASTM international.
  • ASTM C617, A. (2020). C617/C617M 15–standard practice for capping cylindrical concrete specimens. ASTM American Society for Testing and Materials–Committee C09 on Concrete and Concrete Aggregates–Subcommittee C, 04.02, 9.
  • ASTM C618. (2019). ASTM C618-19 standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual Book of ASTM Standards.
  • ASTM C78. (2020). Annual book of ASTM standards. In Standard test method for flexural strength of concrete (using simple beam with third-point loading) (Vol. 100, pp. 38–40).
  • Choi, W. C., Yun, H. D., & Lee, J. Y. (2012). Mechanical properties of mortar containing bio-char from pyrolysis. Journal of the Korea Institute for Structural Maintenance and Inspection, 16(3), 67–74. https://doi.org/10.11112/jksmi.2012.16.3.067
  • Corinaldesi, V., Moriconi, G., & Naik, T. R. (2010). Characterization of marble powder for its use in mortar and concrete. Construction and Building Materials, 24(1), 113–117. https://doi.org/10.1016/j.conbuildmat.2009.08.013
  • De Koker, D., & Van Zijl, G. (2004). Extrusion of engineered cement-based composite material. Proceedings of 6th RILEM Symposium on Fiber-Reinforced Concretes (FRC) - BEFIB 2004, Varenna, Italy (pp. 1301–1310).
  • De Schepper, M., Van den Heede, P., Van Driessche, I., & De Belie, N. (2014). Life cycle assessment of completely recyclable concrete. Materials, 7(8), 6010–6027. https://doi.org/10.3390/ma7086010
  • El-Gammal, M., Ibrahim, M., Badr, E., Asker, S. A., & El-Galad, N. M. (2011). Health risk assessment of marble dust at marble workshops. Nature and Science, 9(11), 144–154.
  • Fischer, G., & Shuxin, W. (2003). Design of engineered cementitious composites (ECC) for processing and workability requirements. In Brittle matrix composites 7 (Vol. 7, pp. 29–36). Elsevier. https://doi.org/10.1533/9780857093103.29
  • Gul, A., Alam, B., Iqbal, M. J., Ahmed, W., Shahzada, K., Javed, M. H., & Khan, E. A. (2021). Impact of length and percent dosage of recycled steel fibers on the mechanical properties of concrete. Civil Engineering Journal, 7(10), 1650–1666. https://doi.org/10.28991/cej-2021-03091750
  • Hamza, R. A., El-Haggar, S., & Khedr, S. (2011). Marble and granite waste: Characterization and utilization in concrete bricks. International Journal of Bioscience, Biochemistry and Bioinformatics, 1(4), 286–291. https://doi.org/10.7763/IJBBB.2011.V1.54
  • Horikoshi, T., Ogawa, A., Saito, T., Hoshiro, H., Fischer, G., & Li, V. (2006). Properties of polyvinyl alcohol fiber as reinforcing materials for cementitious composites. Proceedings of the International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications.
  • Jalal, M., Nassir, N., & Jalal, H. (2019). Waste tire rubber and pozzolans in concrete: A trade-off between cleaner production and mechanical properties in a greener concrete. Journal of Cleaner Production, 238, 117882. https://doi.org/10.1016/j.jclepro.2019.117882
  • Kavya, B., Sureshchandra, H., Prashantha, S., & Shrikanth, A. (2022). Prediction of mechanical properties of glass and basalt fiber reinforced concrete using ANN. Asian Journal of Civil Engineering, 23(6), 877–886. https://doi.org/10.1007/s42107-022-00460-w
  • Khan, A. J., Ali Qureshi, L., Khan, M. N. A., Gul, A., Umar, M., Manan, A., Badrashi, Y. I., Abbas, A., Javed, U., & Farooq, R. (2021). Axial compressive behavior of Reinforced Concrete (RC) columns incorporating multi-walled carbon nanotubes and marble powder. Crystals, 11(3), 247. https://doi.org/10.3390/cryst11030247
  • Khan, Z., Gul, A., Shah, S. A. A., Samiullah, Q., Wahab, N., Badshah, E., Naqash, T., & Shahzada, K. (2021). Utilization of marble wastes in clay bricks: A step towards lightweight energy efficient construction materials. Civil Engineering Journal, 7(9), 1488–1500. https://doi.org/10.28991/cej-2021-03091738
  • Khan, W., Shehzada, K., Bibi, T., Islam, S. U., & Khan, S. W. (2018). Performance evaluation of Khyber Pakhtunkhwa Rice Husk Ash (RHA) in improving mechanical behavior of cement. Construction and Building Materials, 176, 89–102. https://doi.org/10.1016/j.conbuildmat.2018.04.213
  • Li, V. C. (2008a). Engineered cementitious composites (ECC) material, structural, and durability performance. https://doi.org/10.1201/9781420007657.ch24.
  • Li, V. C. (2008b). Engineered cementitious composites (ECC) material, structural, and durability performance. https://doi.org/10.1201/9781420007657.ch24.
  • Li, M., & Li, V. C. (2013). Rheology, fiber dispersion, and robust properties of engineered cementitious composites. Materials and Structures, 46(3), 405–420. https://doi.org/10.1617/s11527-012-9909-z
  • Li, V. C., Mishra, D. K., Naaman, A. E., Wight, J. K., LaFave, J. M., Wu, H.-C., & Inada, Y. (1994). On the shear behavior of engineered cementitious composites. Advanced Cement Based Materials, 1(3), 142–149. https://doi.org/10.1016/1065-7355(94)90045-0
  • LI, W. C., Tse, H., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the Total Environment, 566, 333–349. https://doi.org/10.1016/j.scitotenv.2016.05.084
  • Li, G., & Zhao, X. (2003). Properties of concrete incorporating fly ash and ground granulated blast-furnace slag. Cement and Concrete Composites, 25(3), 293–299. https://doi.org/10.1016/S0958-9465(02)00058-6
  • Maalej, M., & Li, V. C. (1994). Flexural/tensile-strength ratio in engineered cementitious composites. Journal of Materials in Civil Engineering, 6(4), 513–528. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(513)
  • Montgomery, D. C., & Runger, G. C. (2010). Applied statistics and probability for engineers. John wiley & sons.
  • Osborne, G. (1999). Durability of Portland blast-furnace slag cement concrete. Cement and Concrete Composites, 21(1), 11–21. https://doi.org/10.1016/S0958-9465(98)00032-8
  • Pan, Z., Wu, C., Liu, J., Wang, W., & Liu, J. (2015). Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Construction and Building Materials, 78, 397–404. https://doi.org/10.1016/j.conbuildmat.2014.12.071
  • Pathan, V. G., & Pathan, M. G. (2014). Feasibility and need of use of waste marble powder in concrete production. IOSR Journal of Mechanical and Civil Engineering, 6(1), 23–26.
  • Rahman, M. M., & Alam, K. (2022). Impact of industrialization and non-renewable energy on environmental pollution in Australia: Do renewable energy and financial development play a mitigating role? Renewable Energy, 195, 203–213. https://doi.org/10.1016/j.renene.2022.06.012
  • Rahman, M. T., Mohajerani, A., & Giustozzi, F. (2020). Recycling of waste materials for asphalt concrete and bitumen: A review. Materials, 13(7), 1495. https://doi.org/10.3390/ma13071495
  • Redon, C., Li, V. C., Wu, C., Hoshiro, H., Saito, T., & Ogawa, A. (2001). Measuring and modifying interface properties of PVA fibers in ECC matrix. Journal of Materials in Civil Engineering, 13(6), 399–406. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(399)
  • Sahmaran, M., Lachemi, M., Hossain, K. M., Ranade, R., & Li, V. C. (2009). Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Materials Journal, 106(3), 308.
  • Sambangi, A., & Eluru, A. (2022). Role of copper slag on improvement of strength, quality and durability of high-strength self-compacting concrete: An industrial waste. Asian Journal of Civil Engineering, 23(6), 961–971. https://doi.org/10.1007/s42107-022-00466-4
  • Sharma, R., & Khan, R. A. (2017). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of Cleaner Production, 151, 179–192. https://doi.org/10.1016/j.jclepro.2017.03.031
  • Singh, M., Saini, B., & Chalak, H. (2020). Long term evaluation of engineered cementitious composite containing stone slurry powder. Construction and Building Materials, 264, 120183. https://doi.org/10.1016/j.conbuildmat.2020.120183
  • Sufian, M., Ullah, S., Ostrowski, K. A., Ahmad, A., Zia, A., Śliwa-Wieczorek, K., Siddiq, M., & Awan, A. A. (2021). An experimental and empirical study on the use of waste marble powder in construction material. Materials, 14(14), 3829. https://doi.org/10.3390/ma14143829
  • Tayyab, S., Ullah, A., Shah, K., Mehmood, F., & Gul, A. (2018). Influence of reduced water cement ratio on behaviour of concrete having plastic aggregate. Civil Engineering Journal, 4(12), 2971–2977. https://doi.org/10.28991/cej-03091213
  • Thomas, J. V., & Thomas, R. M. (2022). Improvement in field applicability of concrete using fly ash and ground granulated blast furnace slag by sodium silicate activation. Asian Journal of Civil Engineering, 23(3), 337–349. https://doi.org/10.1007/s42107-022-00426-y
  • Tunc, E. T. (2019). Recycling of marble waste: A review based on strength of concrete containing marble waste. Journal of Environmental Management, 231, 86–97. https://doi.org/10.1016/j.jenvman.2018.10.034
  • Uysal, M., & Yilmaz, K. (2011). Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete Composites, 33(7), 771–776. https://doi.org/10.1016/j.cemconcomp.2011.04.005
  • Wang, S., & Li, V. C. (2007). Engineered cementitious composites with high-volume fly ash. ACI Materials Journal, 104(3), 233.
  • Yang, E.-H., & Li, V. C. (2010). Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model. Construction and Building Materials, 24(2), 130–139. https://doi.org/10.1016/j.conbuildmat.2007.05.014
  • Yao, F., Liu, G., Ji, Y., Tong, W., Du, X., Li, K., Shrestha, A., & Martek, I. (2020). Evaluating the environmental impact of construction within the industrialized building process: A monetization and building information modelling approach. International Journal of Environmental Research and Public Health, 17(22), 8396. https://doi.org/10.3390/ijerph17228396
  • Yu, J. H., Chen, W., Yu, M. X., & Hua, Y. E. (2010). The microstructure of self-healed PVA ECC under wet and dry cycles. Materials Research, 13(2), 225–231. https://doi.org/10.1590/S1516-14392010000200017
  • Yu, K., Wang, Y., Yu, J., & Xu, S. (2017). A strain-hardening cementitious composites with the tensile capacity up to 8%. Construction and Building Materials, 137, 410–419. https://doi.org/10.1016/j.conbuildmat.2017.01.060
  • Zhang, J., Leung, C. K., & Gao, Y. (2011). Simulation of crack propagation of fiber reinforced cementitious composite under direct tension. Engineering Fracture Mechanics, 78(12), 2439–2454. https://doi.org/10.1016/j.engfracmech.2011.06.003