434
Views
1
CrossRef citations to date
0
Altmetric
Materials Engineering

Microstructural changes and their influence on corrosion post-annealing treatment of copper and AISI 5140 steel in 3.5 wt% NaCl medium

, , , &
Article: 2244770 | Received 07 Jun 2023, Accepted 01 Aug 2023, Published online: 18 Aug 2023

References

  • Ahmed, A. H., Sherif, E. S. M., Abdo, H. S., & Gad, E. S. (2021). Ethanedihydrazide as a corrosion inhibitor for Iron in 3.5% NaCl solutions. ACS Omega, 6(22), 14525–19. https://doi.org/10.1021/acsomega.1c01422
  • Al-Rubaiey, S. I., Anoon, E. A., & Hanoon, M. M. (2013). The influence of microstructure on the corrosion rate of carbon steels. Engineering & Technology Journal, 31(10), 1825–1836.
  • Amezhnov, A. V., Rodionova, I. G., Kuznetsov, D. V., Komissarov, A. A., & Sidorova, E. P. (2019). Effect of heat treatment on corrosion activity of nonmetallic inclusions and steel corrosion resistance in aqueous media. Metallurgist, 62(11), 1232–1239. https://doi.org/10.1007/s11015-019-00779-x
  • Amin, M. A., Saracoglu, M., El-Bagoury, N., Sharshar, T., Ibrahim, M. M., Wysocka, J., Krakowiak, S., & Ryl, J. (2016). Microstructure and corrosion behaviour of carbon steel and ferritic and austenitic stainless steels in NaCl solutions and the effect of p-nitrophenyl phosphate disodium salt. International Journal of Electrochemical Science, 11(12), 10029–10052. https://doi.org/10.20964/2016.12.17
  • Ao, S.-I., Douglas, C., Grundfest, W. S., & Burgstone, J. (2014). Microstructural features and mechanical behavior of unalloyed medium carbon steel after subsequent heat treatment. Proceedings of the World Congress on Engineering and Computer Science (p. 1107).
  • Aung, N. N., & Zhou, W. (2002). Effect of heat treatment on corrosion and electrochemical behaviour of AZ91D magnesium alloy. Journal of Applied Electrochemistry, 32(12), 1397–1401. https://doi.org/10.1023/A:1022698916817
  • Bahmani, A., Arthanari, S., & Shin, K. S. Formulation of corrosion rate of magnesium alloys using microstructural parameters. (2020). Journal of Magnesium and Alloys, 8(1), 134–149. National Engg. Reaserch Center for Magnesium Alloys. https://doi.org/10.1016/j.jma.2019.12.001
  • Bhagavathi, L. R., Chaudhari, G. P., & Nath, S. K. (2011). Mechanical and corrosion behavior of plain low carbon dual-phase steels. Materials and Design, 32(1), 433–440. https://doi.org/10.1016/j.matdes.2010.06.025
  • Cai, W., & Bellon, P. (2019). Effect of annealing treatment on the dry sliding wear behavior of copper. Wear, 426–427, 1187–1194. https://doi.org/10.1016/j.wear.2019.01.014
  • Chang, J.-W., Guo, X.-W., Fu, P.-H., Peng, L.-M., & Ding, W.-J. (2007). Effect of heat treatment on corrosion and electrochemical behaviour of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy. Electrochimica Acta, 52(9), 3160–3167. https://doi.org/10.1016/j.electacta.2006.09.069
  • Coulibaly, N. H., Brou, Y. S., Diomande, G. D., Creus, J., & Trokourey, A. (2018). Nicotinic acid as green inhibitor for copper corrosion in 3.5 wt % NaCl solution: Experimental and quantum chemical calculations. International Journal of Biological and Chemical Sciences, 12(2), 1008. https://doi.org/10.4314/ijbcs.v12i2.30
  • Deepa, P., & Padmalatha, R. (2017). Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media. Arabian Journal Chemistry, 10, S2234–S2244. https://doi.org/10.1016/J.ARABJC.2013.07.059
  • Dobkowska, A., Adamczyk – Cieślak, B., Kubásek, J., Vojtěch, D., Kuc, D., Hadasik, E., & Mizera, J. (2021). Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn. Journal of Magnesium and Alloys, 9(2), 467–477. https://doi.org/10.1016/j.jma.2020.07.007
  • Fernine, Y., Arrousse, N., Haldhar, R., Raorane, C. J., Kim, S.-C., Hajjaji, F. E., Touhami, M. E., Beniken, M., Haboubi, K., & Taleb, M. (2022a). Synthesis and characterization of phenolphthalein derivatives, detailed theoretical DFT computation/molecular simulation, and prevention of AA2024-T3 corrosion in medium 3.5% NaCl. Journal of the Taiwan Institute of Chemical Engineers, 140, 104556. https://doi.org/10.1016/j.jtice.2022.104556
  • Fernine, Y., Arrousse, N., Haldhar, R., Raorane, C. J., Kim, S.-C., Hajjaji, F. E., Touhami, M. E., Beniken, M., Haboubi, K., & Taleb, M. (2022b). Synthesis and characterization of phenolphthalein derivatives, detailed theoretical DFT computation/molecular simulation, and prevention of AA2024-T3 corrosion in medium 3.5% NaCl. Journal of the Taiwan Institute of Chemical Engineers, 140, 104556. https://doi.org/10.1016/j.jtice.2022.104556/
  • Field, D. P., Bradford, L. T., Nowell, M. M., & Lillo, T. M. (2007). The role of annealing twins during recrystallization of Cu. Acta Materialia, 55(12), 4233–4241. https://doi.org/10.1016/j.actamat.2007.03.021
  • Ghiamati Yazdi, E., Ghahfarokhi, Z. S., & Bagherzadeh, M. (2017). Protection of carbon steel corrosion in 3.5% NaCl medium by aryldiazonium grafted graphene coatings. New Journal of Chemistry, 41(21), 12470–12480. https://doi.org/10.1039/c7nj01655g
  • Gong, Y., Wang, Z., Gao, F., Zhang, S., & Li, H. (2015). Synthesis of new benzotriazole derivatives containing carbon chains as the corrosion inhibitors for copper in sodium chloride solution. Industrial and Engineering Chemistry Research, 54(49), 12242–12253. https://doi.org/10.1021/acs.iecr.5b02988
  • Huang, H., & Guo, X. (2020). The relationship between the inhibition performances of three benzo derivatives and their structures on the corrosion of copper in 3.5 wt.% NaCl solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 598, 598. https://doi.org/10.1016/j.colsurfa.2020.124809
  • Khaled, K. F. (2011). Studies of the corrosion inhibition of copper in sodium chloride solutions using chemical and electrochemical measurements. Materials Chemistry and Physics, 125(3), 427–433. https://doi.org/10.1016/j.matchemphys.2010.10.037
  • Khaled, K. F., Amin, M. A., & Al-Mobarak, N. A. (2010). On the corrosion inhibition and adsorption behaviour of some benzotriazole derivatives during copper corrosion in nitric acid solutions: A combined experimental and theoretical study. Journal of Applied Electrochemistry, 40(3), 601–613. https://doi.org/10.1007/s10800-009-0035-8
  • Krishnaveni, K., & Ravichandran, J. (2015). A study on the inhibition of copper corrosion in sulphuric acid by aqueous extract of leaves of Morinda tinctoria. Journal of Failure Analysis & Prevention, 15(5), 711–721. https://doi.org/10.1007/s11668-015-0002-0
  • Lei, Y. B., Wang, Z. B., Zhang, B., Luo, Z. P., Lu, J., & Lu, K. (2021). Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing. Acta Materialia, 208, 116773. https://doi.org/10.1016/j.actamat.2021.116773
  • Liu, T., Chen, S., Cheng, S., Tian, J., Chang, X., & Yin, Y. (2007). Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochimica Acta, 52(28), 8003–8007. https://doi.org/10.1016/j.electacta.2007.06.072
  • Loto, R. T., & Loto, C. A. (2018). Corrosion behaviour of S43035 ferritic stainless steel in hot sulphate/chloride solution. Journal of Materials Research and Technology, 7(3), 231–239. https://doi.org/10.1016/j.jmrt.2017.07.004
  • Murase, Y., Masuda, H., & Katayama, H. (2021). Corrosion resistance of finer/coarser pearlitic structures of carbon steel. Journal of the Electrochemical Society, 168(4), 041501. https://doi.org/10.1149/1945-7111/abf185
  • Palumbo, G., Dunikowski, D., Wirecka, R., Mazur, T., Lelek-Borkowska, U., Wawer, K., & Banaś, J. (2021). Effect of grain size on the corrosion behavior of Fe-3wt.%Si-1wt.%Al electrical steels in pure water saturated with CO2. Materials, 14(17), 5084. https://doi.org/10.3390/ma14175084
  • Prabhu, P. R., Hiremath, P., Prabhu, D., Gowrishankar, M. C., & Gurumurthy, B. M. (2021). Chemical, electrochemical, thermodynamic and adsorption study of EN8 dual-phase steel with ferrite-martensite structure in 0.5 M H2SO4 using pectin as inhibitor. Chemical Papers, 75(11), 6083–6099. https://doi.org/10.1007/s11696-021-01773-x
  • Prabhu, P. R., Prabhu, D., Sharma, S., & Kulkarni, S. M. (2020). Surface properties and corrosion behavior of turn-assisted deep-cold-rolled AISI 4140 steel. Journal of Materials Engineering and Performance, 29(9), 5871–5885. https://doi.org/10.1007/s11665-020-05051-x
  • Prabhu, D., Sharma, S., Prabhu, P. R., Jomy, J., & Sadanand, R. V. (2022a). Analysis of the inhibiting action of pectin on corrosion of AISI1040 dual-phase steel with ferrite–martensite and ferrite–bainite structure: A comparison in 0.5 M sulphuric acid. Journal of the Iranian Chemical Society, 19(4), 1109–1128. https://doi.org/10.1007/s13738-021-02368-9
  • Prabhu, D., Sharma, S., Prabhu, P. R., Jomy, J., & Sadanand, R. V. (2022b). Analysis of the inhibiting action of pectin on corrosion of AISI1040 dual-phase steel with ferrite–martensite and ferrite–bainite structure: A comparison in 0.5 M sulphuric acid. Journal of the Iranian Chemical Society, 19(4), 1109–1128. https://doi.org/10.1007/s13738-021-02368-9
  • Rodríguez-Gómez, F. J., Valdelamar, M. P., Vazquez, A. E., Del Valle Perez, P., Mata, R., Miralrio, A., & Castro, M. (2019). Mycophenolic acid as a corrosion inhibitor of carbon steel in 3% wt. NaCl solution. An experimental and theoretical study. Journal of Molecular Structure, 1183, 168–181. https://doi.org/10.1016/j.molstruc.2018.12.035
  • Sherif, E.-S., Almajid, A., Khalil, A., Junaedi, H., & Hamdan Latief, F. (2013). Electrochemical studies on the corrosion behavior of API X65 pipeline steel in chloride solutions. International Journal of Electrochemical Science, 8(7), 9360–9370. https://doi.org/10.1016/S1452-3981(23)12975-0
  • Slemnik, M. (2016). Activation energies ratio as corrosion indicator for different heat treated stainless steels. Materials and Design, 89, 795–801. https://doi.org/10.1016/j.matdes.2015.10.035
  • Tan, H., Jiang, Y., Deng, B., Sun, T., Xu, J., & Li, J. (2009). Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750. Materials Characterization, 60(9), 1049–1054. https://doi.org/10.1016/j.matchar.2009.04.009
  • Wang, Z., Gong, Y., Jing, C., Huang, H., Li, H., Zhang, S., & Gao, F. (2016). Synthesis of dibenzotriazole derivatives bearing alkylene linkers as corrosion inhibitors for copper in sodium chloride solution: A new thought for the design of organic inhibitors. Corrosion Science, 113, 64–77. https://doi.org/10.1016/j.corsci.2016.10.005
  • Wu, M., Gao, Z., Wu, S., Liu, Y., & Hu, W. (2021). Effect of temperature on corrosion behavior of X70 pipeline steel in 3.5% NaCl solution. International Journal of Electrochemical Science, 16(6), 1–14. https://doi.org/10.20964/2021.06.64
  • Wu, Y., Luo, S., & Mou, Q. (2020). Influence of temperature on the corrosion behavior of X80 steel in an acidic soil environment. International Journal of Electrochemical Science, 15(1), 576–586. https://doi.org/10.20964/2020.01.03
  • Yu, J., Wang, G., & Rong, Y. (2015). Experimental study on the surface integrity and chip formation in the micro cutting process. Procedia Manufacturing, 1, 655–662. https://doi.org/10.1016/j.promfg.2015.09.063
  • Zeng, Y., Kang, L., Wu, Y., Wan, S., Liao, B., Li, N., & Guo, X. (2022). Melamine modified carbon dots as high effective corrosion inhibitor for Q235 carbon steel in neutral 3.5 wt% NaCl solution. Journal of Molecular Liquids, 349, 118108. https://doi.org/10.1016/j.molliq.2021.118108
  • Zhang, Q. H., Hou, B. S., Li, Y. Y., Zhu, G. Y., Liu, H. F., & Zhang, G. A. (2020). Two novel chitosan derivatives as high efficient eco-friendly inhibitors for the corrosion of mild steel in acidic solution. Corrosion Science, 164, 108346. https://doi.org/10.1016/j.corsci.2019.108346