1,530
Views
1
CrossRef citations to date
0
Altmetric
Materials Engineering

Graphene-based electrodes for ECG signal monitoring: Fabrication methodologies, challenges and future directions

, ORCID Icon, , ORCID Icon, ORCID Icon, & show all
Article: 2246750 | Received 30 May 2023, Accepted 07 Aug 2023, Published online: 17 Aug 2023

References

  • Akter Shathi, M., Minzhi, C., Khoso, N. A., Deb, H., Ahmed, A., & Sai Sai, W. (2020). All organic graphene oxide and poly (3, 4-ethylene dioxythiophene) - poly (styrene sulfonate) coated knitted textile fabrics for wearable electrocardiography (ECG) monitoring. Synthetic Metals, 263, 116329. https://doi.org/10.1016/j.synthmet.2020.116329
  • Ali, B., Bidsorkhi, H. C., D’Aloia, A. G., Laracca, M., and Sarto, M. S. (2022). Graphene-based flexible dry electrodes for biosignal detection. In 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS) (pp. 1–27). https://doi.org/10.1109/FLEPS53764.2022.9781538.
  • Arquilla, K., Webb, A. K., & Anderson, A. P. (2020). Textile Electrocardiogram (ECG) electrodes for wearable health monitoring. Sensors, 20(4). https://doi.org/10.3390/s20041013
  • Asadi, S., He, Z., Heydari, F., Li, D., Yuce, M. R., & Alan, T. (2021). Graphene elastomer electrodes for medical sensing applications: Combining high sensitivity, low noise and excellent skin compatibility to enable continuous medical monitoring. IEEE Sensors Journal, 21(13), 13967–13975. https://doi.org/10.1109/JSEN.2020.3003300
  • Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008, March). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902–907. https://doi.org/10.1021/nl0731872
  • Bansal, M., & Gandhi, B. (2019, December). CNT based electrodes (wearable & textile-based) for cardiac monitoring in long term & continuous fashion. AIP Conference Proceedings, 2201(1), 20023. https://doi.org/10.1063/1.5141447
  • Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., & Schwödiauer, R. (2014, January). 25th anniversary article: A soft future: From robots and sensor skin to energy harvesters. Advanced Materials, 26(1), 149–162. https://doi.org/10.1002/adma.201303349
  • Beach, C., Karim, N., and Casson, A. J. (2018). Performance of graphene ECG electrodes under varying conditions. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3813–3816). https://doi.org/10.1109/EMBC.2018.8513376
  • Bidsorkhi, H. C., Ballam, L. R., D’Aloia, A. G., Tamburrano, A., De Bellis, G., and Sarto, M. S. (2020). Flexible graphene based polymeric electrodes for low energy applications. In 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO) (pp. 263–266). https://doi.org/10.1109/NANO47656.2020.9183498
  • Birnie, D. P., Aegerter, M. A., & Mennig, M. (Eds.). (2004). Spin coating technique BT - Sol-gel technologies for glass producers and users. Springer. https://doi.org/10.1007/978-0-387-88953-5_4
  • Bong, J., Yasin, O., Vaidya, V. R., Park, J., Attia, Z. I., Padmanabhan, D., Cho, S. J., Asirvatham, R., Schneider, N., Lee, J., Kim, E. M., Friedman, P. A., & Ma, Z. (2020, May). Injectable flexible subcutaneous electrode array technology for electrocardiogram monitoring device. ACS Biomaterials Science & Engineering, 6(5), 2652–2658. https://doi.org/10.1021/acsbiomaterials.9b01102
  • Brezulianu, A., Geman, O., Zbancioc, M. D., Hagan, M., Aghion, C., Hemanth, D. J., & Son, L. H. (2019). IoT based heart activity monitoring using inductive Sensors. Sensors, 19(15). https://doi.org/10.3390/s19153284
  • Brinker, Schneller C. J. T., Waser R., Kosec M., & Payne D. (Eds.). (2013). Dip coating BT - Chemical solution deposition of functional oxide thin films. Springer Vienna. https://doi.org/10.1007/978-3-211-99311-8_10
  • Brownson, D. A. C., & Banks, C. E. (2012). Fabricating graphene supercapacitors: Highlighting the impact of surfactants and moieties. Chemical Communications, 48(10), 1425–1427. https://doi.org/10.1039/C1CC11276G
  • Bunch, J. S., van der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2007, January). Electromechanical resonators from graphene sheets. Science, 315(5811), 490–493. https://doi.org/10.1126/science.1136836
  • Celik, N., Manivannan, N., Strudwick, A., & Balachandran, W. (2016). Graphene-enabled electrodes for electrocardiogram monitoring. Nanomaterials, 6(9). https://doi.org/10.3390/nano6090156
  • Chen, H., Chen, W., Bao, S., Lu, C., Wang, L., Ma, J., Wang, P., Lu, H., Shu, F., & Bambang Oetomo, S. (2020). Design of an integrated wearable multi-sensor platform based on flexible Materials for neonatal monitoring. IEEE Access, 8, 23732–23747. https://doi.org/10.1109/ACCESS.2020.2970469
  • Cho, J., Moon, J., Jeong, K., & Cho, G. (2007). Application of PU-sealing into Cu/Ni electroless plated polyester fabrics for e-textiles. Fibers and Polymers, 8(3), 330–334. https://doi.org/10.1007/BF02877279
  • Chung, D., & Gray, B. L. (2019). Editors’ choice—development of screen-printed flexible multi-level microfluidic devices with integrated conductive nanocomposite polymer electrodes on textiles. Journal of the Electrochemical Society, 166(9), B3116. https://doi.org/10.1149/2.0191909jes
  • Cui, T. R., Li, D., Huang, X.-R., Yan, A.-Z., Dong, Y., Xu, J.-D., Guo, Y.-Z., Wang, Y., Chen, Z.-K., Shao, W.-C., Tang, Z.-Y., Tian, H., Yang, Y., & Ren, T.-L. (2022). Graphene-based flexible electrode for electrocardiogram signal monitoring. Applied Sciences, 12(9). https://doi.org/10.3390/app12094526
  • Das, P. S., Hossain, M. F., & Park, J. Y. (2017). Chemically reduced graphene oxide-based dry electrodes as touch sensor for electrocardiograph measurement. Microelectronic Engineering, 180, 45–51. https://doi.org/10.1016/j.mee.2017.05.048
  • Das, P. S., Park, S. H., Baik, K. Y., Lee, J. W., & Park, J. Y. (2020). Thermally reduced graphene oxide-nylon membrane based epidermal sensor using vacuum filtration for wearable electrophysiological signals and human motion monitoring. Carbon, 158, 386–393. https://doi.org/10.1016/j.carbon.2019.11.001
  • Deaton, C., Froelicher, E. S., Wu, L. H., Ho, C., Shishani, K., & Jaarsma, T. (2011, June). The global burden of cardiovascular disease. European Journal of Cardiovascular Nursing: Journal of the Working Group on Cardiovascular Nursing of the European Society of Cardiology, 10(2_suppl), S5–S13. https://doi.org/10.1016/S1474-5151(11)00111-3
  • Dong, W., Cheng, X., Xiong, T., & Wang, X. (2019). Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. Biomedical Microdevices, 21(1), 6. https://doi.org/10.1007/s10544-018-0353-x
  • Doytchinova, A., Hassel, J. L., Yuan, Y., Lin, H., Yin, D., Adams, D., Straka, S., Wright, K., Smith, K., Wagner, D., Shen, C., Salanova, V., Meshberger, C., Chen, L. S., Kincaid, J. C., Coffey, A. C., Wu, G., Li, Y., Kovacs, R.J., … Lin, S.-F. (2017). Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram. Heart Rhythm: The Official Journal of the Heart Rhythm Society, 14(1), 25–33. https://doi.org/10.1016/j.hrthm.2016.09.019
  • Du, X., Jiang, W., Zhang, Y., Qiu, J., Zhao, Y., Tan, Q., Qi, S., Ye, G., Zhang, W., & Liu, N. (2020, December). Transparent and stretchable graphene electrode by intercalation doping for epidermal electrophysiology. ACS Applied Materials and Interfaces, 12(50), 56361–56371. https://doi.org/10.1021/acsami.0c17658
  • Dupre, A., Vieau, S., & Iaizzo, P. A. (2009). Basic ECG Theory, 12-lead recordings and their interpretation BT - handbook of cardiac anatomy, physiology, and devices (P. A. Iaizzo, Ed.). Humana Press.
  • Eda, G., & Chhowalla, M. (2010, June). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials (Deerfield Beach, Fla), 22(22), 2392–2415. https://doi.org/10.1002/adma.200903689
  • El-Kady, M. F., & Kaner, R. B. (2013). Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 4(1), 1475. https://doi.org/10.1038/ncomms2446
  • Fu, Y., Zhao, J., Dong, Y., & Wang, X. (2020). Dry electrodes for human bioelectrical signal monitoring. Sensors, 20(13). https://doi.org/10.3390/s20133651
  • Gorgutsa, S., Bélanger-Garnier, V., Ung, B., Viens, J., Gosselin, B., LaRochelle, S., & Messaddeq, Y. (2014). Novel wireless-Communicating textiles made from multi-material and minimally-invasive Fibers. Sensors, 14(10), 19260–19274. https://doi.org/10.3390/s141019260
  • Goyenola, C., Gueorguiev, G. K., Stafström, S., & Hultman, L. (2011). Fullerene-like CSx: A first-principles study of synthetic growth. Chemical Physics Letters, 506(1–3), 86–91. https://doi.org/10.1016/j.cplett.2011.02.059
  • Gualandi, I., Tessarolo, M., Mariani, F., Cramer, T., Tonelli, D., Scavetta, E., & Fraboni, B. (2018). Nanoparticle gated semiconducting polymer for a new generation of electrochemical sensors. Sensors and Actuators B: Chemical, 273, 834–841. https://doi.org/10.1016/j.snb.2018.06.109
  • Hong, Y. J., Jeong, H., Cho, K. W., Lu, N., & Kim, D.-H. (2019, May). Wearable and implantable devices for cardiovascular healthcare: From monitoring to therapy based on flexible and stretchable electronics. Advanced Functional Materials, 29(19), 1808247. https://doi.org/10.1002/adfm.201808247
  • Hossain, M. F., Heo, J. S., Nelson, J., & Kim, I. (2019). Paper-based flexible electrode using chemically-modified graphene and functionalized multiwalled carbon nanotube composites for electrophysiological signal sensing. Information, 10(10). https://doi.org/10.3390/info10100325
  • Huang, C.-Y., & Chiu, C.-W. (2021, February). Facile fabrication of a stretchable and flexible nanofiber carbon film-sensing electrode by electrospinning and its application in smart clothing for ECG and EMG monitoring. ACS Applied Electronic Materials, 3(2), 676–686. https://doi.org/10.1021/acsaelm.0c00841
  • Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., & Zhang, H. (2011, July). Graphene-based materials: Synthesis, characterisation, properties, and applications. Small, 7(14), 1876–1902. https://doi.org/10.1002/smll.201002009
  • Jia, X., Campos-Delgado, J., Terrones, M., Meunier, V., & Dresselhaus, M. S. (2011). Graphene edges: A review of their fabrication and characterisation. Nanoscale, 3(1), 86–95. https://doi.org/10.1039/C0NR00600A
  • Kabiri Ameri, S., Ho, R., Jang, H., Tao, L., Wang, Y., Wang, L., Schnyer, D. M., Akinwande, D., & Lu, N. (2017, August). Graphene electronic tattoo Sensors. Agricultural Science & Technology Nano, 11(8), 7634–7641. https://doi.org/10.1021/acsnano.7b02182
  • Kakanakova-Georgieva, A., Ivanov, I. G., Suwannaharn, N., Hsu, C.-W., Cora, I., Pécz, B., Giannazzo, F., Sangiovanni, D. G., & Gueorguiev, G. K. (2021). MOCVD of AlN on epitaxial graphene at extreme temperatures. CrystEngcomm, 23(2), 385–390. https://doi.org/10.1039/D0CE01426E
  • Karim, N., Afroj, S., Malandraki, A., Butterworth, S., Beach, C., Rigout, M., Novoselov, K. S., Casson, A. J., & Yeates, S. G. (2017). All inkjet-printed graphene-based conductive patterns for wearable e-textile applications. Journal of Materials Chemistry C, 5(44), 11640–11648. https://doi.org/10.1039/C7TC03669H
  • Khan, A., Hussain, M., Nur, O., & Willander, M. (2014). Fabrication of zinc oxide nanoneedles on conductive textile for harvesting piezoelectric potential. Chemical Physics Letters, 612, 62–67. https://doi.org/10.1016/j.cplett.2014.08.009
  • Kidambi, P. R., Ducati, C., Dlubak, B., Gardiner, D., Weatherup, R. S., Martin, M.-B., Seneor, P., Coles, H., & Hofmann, S. (2012, October). The parameter space of graphene chemical vapor deposition on polycrystalline Cu. The Journal of Physical Chemistry C, 116(42), 22492–22501. https://doi.org/10.1021/jp303597m
  • Kim, T., Cho, M., & Yu, K. J. (2018). Flexible and stretchable bio-integrated electronics based on carbon nanotube and graphene. Materials, 11(7). https://doi.org/10.3390/ma11071163
  • Lam, C. L. (2017). Graphene ink-coated cotton fabric-based flexible electrode for electrocardiography. In 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME) (pp. 73–75). https://doi.org/10.1109/ICICI-BME.2017.8537771
  • Lee, S. M., Byeon, H. J., Lee, J. H., Baek, D. H., Lee, K. H., Hong, J. S., & Lee, S.-H. (2014). Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Scientific Reports, 4(1), 6074. https://doi.org/10.1038/srep06074
  • Lee, Y.-D., & Chung, W.-Y. (2009). Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sensors and Actuators B: Chemical, 140(2), 390–395. https://doi.org/10.1016/j.snb.2009.04.040
  • Lee, S., Lee, Y., Park, J., & Choi, D. (2014). Stitchable organic photovoltaic cells with textile electrodes. Nano Energy, 9, 88–93. https://doi.org/10.1016/j.nanoen.2014.06.017
  • Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008, July). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388. https://doi.org/10.1126/science.1157996
  • Liao, K.-H., Lin, Y.-S., Macosko, C. W., & Haynes, C. L. (2011, July). Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Applied Materials and Interfaces, 3(7), 2607–2615. https://doi.org/10.1021/am200428v
  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., & Ruoff, R. S. (2009, June). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312–1314. https://doi.org/10.1126/science.1171245
  • Li, X., Deng, N., Wei, Y., Qiao, Y., Yang, Y., Yang, F., Zhong, G., Chen, B., Tian, H., & Ren, T.-L. (2021). Roll-to-roll graphene films for non-disposable electrocardiogram electrodes. Journal of Physics D: Applied Physics, 54(36), 364003. https://doi.org/10.1088/1361-6463/ac09b7
  • Lim, J. A., Lee, W. H., Lee, H. S., Lee, J. H., Park, Y. D., & Cho, K. (2008, January). Self-organisation of ink-jet-printed TriisopropylsiLylethynyl Pentacene Via Evaporation-induced flows in a drying droplet. Advanced Functional Materials, 18(2), 229–234. https://doi.org/10.1002/adfm.200700859
  • Liu, B. Y., Luo, Z. Y., Zhang, W. Z., Tu, Q., & Jin, X. (2018). A simple method of fabricating graphene-polymer conductive films. International Polymer Processing, 33(1), 135–138. https://doi.org/10.3139/217.3418
  • Liu, B., Luo, Z., Zhang, W., Tu, Q., & Jin, X. (2016). Silver nanowire-composite electrodes for long-term electrocardiogram measurements. Sensors Actuators A: Physics, 247, 459–464. https://doi.org/10.1016/j.sna.2016.06.008
  • Lou, C., Li, R., Li, Z., Liang, T., Wei, Z., Run, M., Yan, X., & Liu, X. (2016, November). Flexible graphene electrodes for prolonged dynamic ECG monitoring. Sensors (Basel), 16(11), https://doi.org/10.3390/s16111833
  • Lu, N., Ameri, S. K., Ha, T., Nicolini, L., Stier, A., & Wang, P. (2017, April). Epidermal electronic systems for sensing and therapy. Proceedings, 10167, 101670. https://doi.org/10.1117/12.2261755
  • Maithani, Y., Mehta, B. R., & Singh, J. P. (2022). Implementation of hybrid Ag nanorods embedded RGO-PDMS conductive material for flexible and dry electrocardiography sensor. Materials Letters: X, 15, 100152. https://doi.org/10.1016/j.mlblux.2022.100152
  • Meng, Y., Li, Z., & Chen, J. (2016). A flexible dry electrode based on APTES-anchored PDMS substrate for portable ECG acquisition system. Microsystem Technologies, 22(8), 2027–2034. https://doi.org/10.1007/s00542-015-2490-y
  • Murastov, G., Bogatova, E., Brazovskiy, K., Amin, I., Lipovka, A., Dogadina, E., Cherepnyov, A., Ananyeva, A., Plotnikov, E., Ryabov, V., Rodriguez, R. D., & Sheremet, E. (2020, October). Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics. Biosensors & Bioelectronics, 166, 112426. https://doi.org/10.1016/j.bios.2020.112426
  • Nigusse, A. B., Mengistie, D. A., Malengier, B., Tseghai, G. B., & Langenhove, L. V. (2021). Wearable smart textiles for long-term electrocardiography monitoring—A review. Sensors, 21(12). https://doi.org/10.3390/s21124174
  • Noh, Y., Bales, J. R., Reyes, B. A., Molignano, J., Clement, A. L., Pins, G. D., Florian, J. P., & Chon, K. H. (2016). Novel conductive carbon black and polydimethlysiloxane ECG electrode: A comparison with Commercial electrodes in fresh, chlorinated, and salt water. Annals of Biomedical Engineering, 44(8), 2464–2479. https://doi.org/10.1007/s10439-015-1528-8
  • Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless dirac fermions in graphene. Nature, 438(7065), 197–200. https://doi.org/10.1038/nature04233
  • Nurdin, M. R. F., Hadiyoso, S., and Rizal, A. (2016). A low-cost Internet of Things (IoT) system for multi-patient ECG’s monitoring. In 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC) (pp. 7–11). https://doi.org/10.1109/ICCEREC.2016.7814958
  • Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2015). Graphene/elastomer nanocomposites. Carbon, 95, 460–484. https://doi.org/10.1016/j.carbon.2015.08.055
  • Park, S.-Y., Kang, Y.-J., Lee, S., Kim, D.-G., Kim, J.-K., Kim, J. H., & Kang, J.-W. (2011). Spray-coated organic solar cells with large-area of 12.25cm2. Solar Energy Materials and Solar Cells, 95(3), 852–855. https://doi.org/10.1016/j.solmat.2010.10.033
  • Patchkovskii, S., Tse, J. S., Yurchenko, S. N., Zhechkov, L., Heine, T., & Seifert, G. (2005, July). Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10439–10444. https://doi.org/10.1073/pnas.0501030102
  • Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer (Guildf), 52(1), 5–25. https://doi.org/10.1016/j.polymer.2010.11.042
  • Prasad, A. S., Jayaram, M. N., & N, K. S. (2021). Fabrication of GNR electrode for ECG signal acquisition. IEEE Sensors Letters, 5(9), 1–4. https://doi.org/10.1109/LSENS.2021.3103841
  • Priyadarsini, S., Mohanty, S., Mukherjee, S., Basu, S., & Mishra, M. (2018). Graphene and graphene oxide as nanomaterials for medicine and biology application. Journal of Nanostructure in Chemistry, 8(2), 123–137. https://doi.org/10.1007/s40097-018-0265-6
  • Pullano, S. A., Kota, V. D., Kakaraparty, K., Fiorillo, A. S., & Mahbub, I. (2022). Optically unobtrusive zeolite-based dry electrodes for wearable ECG monitoring. IEEE Sensors Journal, 22(11), 10630–10639. https://doi.org/10.1109/JSEN.2022.3169504
  • Qiao, Y., Li, X., Jian, J., Wu, Q., Wei, Y., Shuai, H., Hirtz, T., Zhi, Y., Deng, G., Wang, Y., Gou, G., Xu, J., Cui, T., Tian, H., Yang, Y., & Ren, T.-L. (2020, November). Substrate-free multilayer graphene electronic skin for Intelligent diagnosis. ACS Applied Materials and Interfaces, 12(44), 49945–49956. https://doi.org/10.1021/acsami.0c12440
  • Qiao, Y., Li, X., Wang, J., Ji, S., Hirtz, T., Tian, H., Jian, J., Cui, T., Dong, Y., Xu, X., Wang, F., Wang, H., Zhou, J., Yang, Y., Someya, T., & Ren, T.-L. (2022, February). Intelligent and multifunctional graphene nanomesh electronic skin with high comfort. Small, 18(7), 2104810. https://doi.org/10.1002/smll.202104810
  • Qiao, Y., Wang, Y., Jian, J., Li, M., Jiang, G., Li, X., Deng, G., Ji, S., Wei, Y., Pang, Y., Wu, Q., Tian, H., Yang, Y., Wu, X., & Ren, T.-L. (2020). Multifunctional and high-performance electronic skin based on silver nanowires bridging graphene. Carbon, 156, 253–260. https://doi.org/10.1016/j.carbon.2019.08.032
  • Qiao, Y., Wang, Y., Tian, H., Li, M., Jian, J., Wei, Y., Tian, Y., Wang, D.-Y., Pang, Y., Geng, X., Wang, X., Zhao, Y., Wang, H., Deng, N., Jian, M., Zhang, Y., Liang, R., Yang, Y., & Ren, T.-L. (2018, September). Multilayer graphene epidermal electronic skin. Agricultural Science & Technology Nano, 12(9), 8839–8846. https://doi.org/10.1021/acsnano.8b02162
  • Qiao, Y.-C., Wei, Y.-H., Pang, Y., Li, Y.-X., Wang, D.-Y., Li, Y.-T., Deng, N.-Q., Wang, X.-F., Zhang, H.-N., Wang, Q., Yang, Z., Tao, L.-Q., Tian, H., Yang, Y., & Ren, T.-L. (2018). Graphene devices based on laser scribing technology. Japanese Journal of Applied Physics, 57(4S), 04FA01. https://doi.org/10.7567/JJAP.57.04FA01
  • Qiu, J., Yu, T., Zhang, W., Zhao, Z., Zhang, Y., Ye, G., Zhao, Y., Du, X., Liu, X., Yang, L., Zhang, L., Qi, S., Tan, Q., Guo, X., Li, G., Guo, S., Sun, H., Wei, D., & Liu, N. (2020, August). A bioinspired, durable, and nondisposable transparent graphene skin electrode for electrophysiological signal detection. ACS Materials Letters, 2(8), 999–1007. https://doi.org/10.1021/acsmaterialslett.0c00203
  • Raju, A. P. A., Lewis, A., Derby, B., Young, R. J., Kinloch, I. A., Zan, R., & Novoselov, K. S. (2014, May). Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy. Advanced Functional Materials, 24(19), 2865–2874. https://doi.org/10.1002/adfm.201302869
  • Raykar, S. S., & Shet, V. N. (2020). Design of healthcare system using IoT enabled application. Materials Today: Proceedings, 23, 62–67. https://doi.org/10.1016/j.matpr.2019.06.649
  • Romero, F. J., Castillo, E., Rivadeneyra, A., Toral-Lopez, A., Becherer, M., Ruiz, F. G., Rodriguez, N., & Morales, D. P. (2019). Inexpensive and flexible nanographene-based electrodes for ubiquitous electrocardiogram monitoring. Npj Flexible Electronics, 3(1), 12. https://doi.org/10.1038/s41528-019-0056-2
  • Romero, F. J., Rivadeneyra, A., Toral, V., Castillo, E., García-Ruiz, F., Morales, D. P., & Rodriguez, N. (2018). Design guidelines of laser reduced graphene oxide conformal thermistor for IoT applications. Sensors and Actuators A, Physical, 274, 148–154. https://doi.org/10.1016/j.sna.2018.03.014
  • Salvado, R., Loss, C., Gonçalves, R., & Pinho, P. (2012). Textile materials for the design of wearable antennas: A survey. Sensors, 12(11), 15841–15857. https://doi.org/10.3390/s121115841
  • Sangiovanni, D., Faccio, R., Gueorguiev, G. K., & Kakanakova-Georgieva, A. (2023). Discovering atomistic pathways for supply of metal atoms from methyl-based precursors to graphene surface. Physical Chemistry Chemical Physics, 25(1), 829–837. https://doi.org/10.1039/D2CP04091C
  • Scalise, L. and Cosoli, G. (2018). Wearables for health and fitness: Measurement characteristics and accuracy. In 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (pp. 1–6). https://doi.org/10.1109/I2MTC.2018.8409635
  • Schwierz, F. (2010). Graphene transistors. Nature Nanotechnology, 5(7), 487–496. https://doi.org/10.1038/nnano.2010.89
  • Sel, K., Kireev, D., Brown, A., Ibrahim, B., Akinwande, D., and Jafari, R. (2019). Electrical characterisation of graphene-based e-Tattoos for bio-impedance-based physiological sensing. In 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS) (pp. 1–4). https://doi.org/10.1109/BIOCAS.2019.8919003
  • Shen, J., Zhu, Y., Yang, X., & Li, C. (2012). Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical Communications, 48(31), 3686–3699. https://doi.org/10.1039/C2CC00110A
  • Silverman, M. E., Grove, D., & Upshaw, C. B. (2006, June). Why does the heart beat? Circulation, 113(23), 2775–2781. https://doi.org/10.1161/CIRCULATIONAHA.106.616771
  • Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010, February). Inkjet printing—process and its applications. Advanced Materials (Deerfield Beach, Fla), 22(6), 673–685. https://doi.org/10.1002/adma.200901141
  • Sinha, S. K., Alamer, F. A., Woltornist, S. J., Noh, Y., Chen, F., McDannald, A., Allen, C., Daniels, R., Deshmukh, A., Jain, M., Chon, K., Adamson, D. H., & Sotzing, G. A. (2019, September). Graphene and Poly(3,4-ethylene dioxythiophene): Poly(4-styrenesulfonate) on nonwoven fabric as a room temperature metal and its application as dry electrodes for electrocardiography. ACS Applied Materials and Interfaces, 11(35), 32339–32345. https://doi.org/10.1021/acsami.9b05379
  • Song, S., Shen, H., Wang, Y., Chu, X., Xie, J., Zhou, N., & Shen, J. (2020, January). Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids and Surfaces B: Biointerfaces, 185, 110596. https://doi.org/10.1016/j.colsurfb.2019.110596
  • Steirer, K. X., Reese, M. O., Rupert, B. L., Kopidakis, N., Olson, D. C., Collins, R. T., & Ginley, D. S. (2009). Ultrasonic spray deposition for production of organic solar cells. Solar Energy Materials and Solar Cells, 93(4), 447–453. https://doi.org/10.1016/j.solmat.2008.10.026
  • Stephens-Fripp, B., Sencadas, V., Mutlu, R., & Alici, G. (2018). Reusable flexible concentric electrodes coated with a conductive graphene ink for electrotactile stimulation. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00179
  • Strudwick, A. J., Weber, N. E., Schwab, M. G., Kettner, M., Weitz, R. T., Wünsch, J. R., Müllen, K., & Sachdev, H. (2015, January). Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. Agricultural Science & Technology Nano, 9(1), 31–42. https://doi.org/10.1021/nn504822m
  • Suvarnaphaet, P., & Pechprasarn, S. (2017). Graphene-based materials for biosensors: A review. Sensors, 17(10). https://doi.org/10.3390/s17102161
  • Suvarnaphaet, P., Sasivimolkul, S., Sukkasem, C., Pukesamsombut, D., Tanadchangsaeng, N., Boonyagul, S., Pechprasarn, S. (2019). Biodegradable electrode patch made of graphene/PHA for ECG detecting applications. In 2019 12th Biomedical Engineering International Conference (BMEiCON) (pp. 1–5). https://doi.org/10.1109/BMEiCON47515.2019.8990243
  • Suzuki, H., Shiroishi, H., Sasaki, S., & Karube, I. (1999, November). Microfabricated liquid junction Ag/AgCl reference electrode and its application to a one-chip potentiometric sensor. Analytical Chemistry, 71(22), 5069–5075. https://doi.org/10.1021/ac990437t
  • Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89. https://doi.org/10.1088/0957-4484/17/14/R01
  • Terada, T., Toyoura, M., Sato, T., & Mao, X. (2021). Noise-reducing fabric electrode for ECG measurement. Sensors, 21(13). https://doi.org/10.3390/s21134305
  • Tian, H., Yang, Y., Xie, D., Cui, Y.-L., Mi, W.-T., Zhang, Y., & Ren, T.-L. (2014). Wafer-Scale integration of graphene-based electronic, optoelectronic and electroacoustic devices. Scientific Reports, 4(1), 3598. https://doi.org/10.1038/srep03598
  • Toral, V., Castillo, E., Albretch, A., Romero, F. J., Garcia, A., Rodriguez, N., Lugli, P., Morales, D. P., & Rivadeneyra, A. (2020). Cost-effective printed electrodes based on emerging Materials Applied to biosignal acquisition. IEEE Access, 8, 127789–127800. https://doi.org/10.1109/ACCESS.2020.3008945
  • Van Lam, D., Jo, K., Kim, C.-H., Kim, J.-H., Lee, H.-J., & Lee, S.-M. (2016, December). Activated carbon textile via Chemistry of metal extraction for supercapacitors. Agricultural Science & Technology Nano, 10(12), 11351–11359. https://doi.org/10.1021/acsnano.6b06608
  • Verweij, N., Benjamins, J.-W., Morley, M. P., van de Vegte, Y. J., Teumer, A., Trenkwalder, T., Reinhard, W., Cappola, T. P., & van der Harst, P. (2020). The genetic makeup of the electrocardiogram. Cell Systems, 11(3), 229–238.e5. https://doi.org/10.1016/j.cels.2020.08.005
  • Vuorinen, T., Noponen, K., Vehkaoja, A., Onnia, T., Laakso, E., Leppänen, S., Mansikkamäki, K., Seppänen, T., & Mäntysalo, M. (2019). Validation of printed, skin-mounted multilead electrode for ECG measurements. Advanced Materials Technologies, 4(9), 1900246. https://doi.org/10.1002/admt.201900246
  • Wang, X., Liu, Z., & Zhang, T. (2017, July). Flexible sensing electronics for wearable/attachable health monitoring. Small, 13(25), 1602790. https://doi.org/10.1002/smll.201602790
  • Wei, Y., Li, X., Wang, Y., Hirtz, T., Guo, Z., Qiao, Y., Cui, T., Tian, H., Yang, Y., & Ren, T.-L. (2021, November). Graphene-based multifunctional textile for sensing and actuating. Agricultural Science & Technology Nano, 15(11), 17738–17747. https://doi.org/10.1021/acsnano.1c05701
  • Wu, Z.-S., Sun, Y., Tan, Y.-Z., Yang, S., Feng, X., & Müllen, K. (2012, December). Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. Journal of the American Chemical Society, 134(48), 19532–19535. https://doi.org/10.1021/ja308676h
  • Xiao, X., Pirbhulal, S., Dong, K., Wu, W., & Mei, X. (2017). Performance evaluation of plain weave and honeycomb weave electrodes for human ECG monitoring. Journal of Sensors, 2017, 1–13. https://doi.org/10.1155/2017/7539840
  • Xiao, X., Wu, G., Zhou, H., Qian, K., & Hu, J. (2017). Preparation and property evaluation of conductive hydrogel using poly (Vinyl alcohol)/Polyethylene Glycol/graphene oxide for human electrocardiogram acquisition. Polymers, 9(7). https://doi.org/10.3390/polym9070259
  • Xuan, X., Kim, J. Y., Hui, X., Das, P. S., Yoon, H. S., & Park, J.-Y. (2018). A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosensors & Bioelectronics, 120, 160–167. https://doi.org/10.1016/j.bios.2018.07.071
  • Xue, Y., Liu, J., Chen, H., Wang, R., Li, D., Qu, J., & Dai, L. (2012, November). Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized Solar cells. Angewandte Chemie International Edition, 51(48), 12124–12127. https://doi.org/10.1002/anie.201207277
  • Xu, X., Liu, Z., He, P., & Yang, J. (2019, November). Screen printed silver nanowire and graphene oxide hybrid transparent electrodes for long-term electrocardiography monitoring. Journal of Physics D: Applied Physics, 52(45), 455401. https://doi.org/10.1088/1361-6463/ab3869
  • Xu, X., Luo, M., He, P., Guo, X., & Yang, J. (2019). Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Applied Physics A, 125(10). https://doi.org/10.1007/s00339-019-3006-x
  • Xu, X., Luo, M., He, P., & Yang, J. (2020). Washable and flexible screen printed graphene electrode on textiles for wearable healthcare monitoring. Journal of Physics D: Applied Physics, 53(12), 125402. https://doi.org/10.1088/1361-6463/ab5f4a
  • Xu, Y., Sheng, K., Li, C., & Shi, G. (2010, July). Self-assembled graphene hydrogel via a one-step hydrothermal process. Agricultural Science & Technology Nano, 4(7), 4324–4330. https://doi.org/10.1021/nn101187z
  • Yang, J., Zhang, K., Yu, J., Zhang, S., He, L., Wu, S., Liu, C., & Deng, Y. (2021, September). Facile fabrication of robust and reusable PDMS Supported graphene dry electrodes for wearable electrocardiogram monitoring. Advanced Materials Technologies, 6(9), 2100262. https://doi.org/10.1002/admt.202100262
  • Yang, Z., Zhou, Q., Lei, L., Zheng, K., & Xiang, W. (2016). An IoT-cloud based wearable ECG monitoring system for smart healthcare. Journal of Medical Systems, 40(12), 286. https://doi.org/10.1007/s10916-016-0644-9
  • Yan, L., Zheng, Y. B., Zhao, F., Li, S., Gao, X., Xu, B., Weiss, P. S., & Zhao, Y. (2012). Chemistry and physics of a single atomic layer: Strategies and challenges for functionalisation of graphene and graphene-based materials. Chemical Society Reviews, 41(1), 97–114. https://doi.org/10.1039/C1CS15193B
  • Yapici, M. K., & Alkhidir, T. E. (2017). Intelligent medical garments with graphene-Functionalized smart-Cloth ECG Sensors. Sensors, 17(4). https://doi.org/10.3390/s17040875
  • Yapici, M. K., Alkhidir, T., Samad, Y. A., & Liao, K. (2015). Graphene-clad textile electrodes for electrocardiogram monitoring. Sensors and Actuators B: Chemical, 221, 1469–1474. https://doi.org/10.1016/j.snb.2015.07.111
  • Yeo, W.-H., Kim, Y.-S., Lee, J., Ameen, A., Shi, L., Li, M., Wang, S., Ma, R., Jin, S. H., Kang, Z., Huang, Y., & Rogers, J. A. (2013, May). Multifunctional epidermal electronics printed directly onto the skin. Advanced Materials (Deerfield Beach, Fla), 25(20), 2773–2778. https://doi.org/10.1002/adma.201204426
  • Yoo, J. J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B. G., Srivastava, A., Conway, M., Mohana Reddy, A. L., Yu, J., Vajtai, R., & Ajayan, P. M. (2011, April). Ultrathin planar graphene supercapacitors. Nano Letters, 11(4), 1423–1427. https://doi.org/10.1021/nl200225j
  • Yoo, J., Yan, L., Lee, S., Kim, H., & Yoo, H. (2009). A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt. IEEE Transactions on Information Technology in Biomedicine: A Publication of the IEEE Engineering in Medicine and Biology Society, 13(6), 897–902. https://doi.org/10.1109/TITB.2009.2033053
  • Yu, Q., Jauregui, L. A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei, D., Chung, T. F., Peng, P., Guisinger, N. P., Stach, E. A., Bao, J., Pei, S.-S., & Chen, Y. P. (2011, June). Control and characterisation of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 10(6), 443–449. https://doi.org/10.1038/nmat3010
  • Yun, Y. J., Ju, J., Lee, J. H., Moon, S.-H., Park, S.-J., Kim, Y. H., Hong, W. G., Ha, D. H., Jang, H., Lee, G. H., Chung, H.-M., Choi, J., Nam, S. W., Lee, S.-H., & Jun, Y. (2017, September). Highly elastic graphene-based electronics toward electronic skin. Advanced Functional Materials, 27(33), 1701513. https://doi.org/10.1002/adfm.201701513
  • Zahed, M. A., Barman, S. C., Sharifuzzaman, M., Zhang, S., Yoon, H., Park, C., Yoon, S. H., & Park, J. Y. (2021, June). Polyaziridine-encapsulated phosphorene-incorporated flexible 3D porous graphene for multimodal sensing and energy storage applications. Advanced Functional Materials, 31(25), 2009018. https://doi.org/10.1002/adfm.202009018
  • Zahed, M. A., Das, P. S., Maharjan, P., Barman, S. C., Sharifuzzaman, M., Yoon, S. H., & Park, J. Y. (2020). Flexible and robust dry electrodes based on electroconductive polymer spray-coated 3D porous graphene for long-term electrocardiogram signal monitoring system. Carbon, 165, 26–36. https://doi.org/10.1016/j.carbon.2020.04.031
  • Zhao, Y., Zhang, S., Yu, T., Zhang, Y., Ye, G., Cui, H., He, C., Jiang, W., Zhai, Y., Lu, C., Gu, X., & Liu, N. (2021). Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nature Communications, 12(1), 4880. https://doi.org/10.1038/s41467-021-25152-y
  • Zhou, Y., Ding, X., Zhang, J., Duan, Y., Hu, J., & Yang, X. (2014). Fabrication of conductive fabric as textile electrode for ECG monitoring. Fibers and Polymers, 15(11), 2260–2264. https://doi.org/10.1007/s12221-014-2260-y
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010, September). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials (Deerfield Beach, Fla), 22(35), 3906–3924. https://doi.org/10.1002/adma.201001068