1,159
Views
2
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Effect of various factors and hygrothermal ageing environment on the low velocity impact response of fibre reinforced polymer composites- a comprehensive review

, & ORCID Icon
Article: 2247228 | Received 31 May 2023, Accepted 08 Aug 2023, Published online: 17 Aug 2023

References

  • Abrate, S. (1998). The dynamics of impact on composite structures. Key Engineering Materials, 141–143, 671–23. https://doi.org/10.4028/www.scientific.net/KEM.141-143.671
  • Abrate, S., & Abrate, S. (2009). Low-velocity impact damage. Impact Composite Structure, 135–160. https://doi.org/10.1017/cbo9780511574504.005
  • Agarwal, B. D., & Broutman, L. J. (1990). Analysis and performance of fibre composites. (2nd ed.). John Wiley & Sons Inc.
  • Agarwal, S., Pai, Y., Pai, D., & Mahesha, G. T. (2023). Assessment of ageing effect on the mechanical and damping characteristics of thin quasi-isotropic hybrid carbon-Kevlar/epoxy intraply composites. Cogent Engineering, 10(1). https://doi.org/10.1080/23311916.2023.2235111
  • Agrawal, S., Singh, K. K., & Sarkar, P. K. (2014). Impact damage on fibre-reinforced polymer matrix composite – a review. Journal of Composite Materials, 48(3), 317–332. https://doi.org/10.1177/0021998312472217
  • Ahmad, F., Abbassi, F., Ul-Islam, M., Jacquemin, F., & Hong, J. W. (2021). Enhanced impact-resistance of aeronautical quasi-isotropic composite plates through diffused water molecules in epoxy. Scientific Reports, 11, 1–13. https://doi.org/10.1038/s41598-021-81443-w
  • Ahmad, F., Hong, J. W., Choi, H. S., & Park, M. K. (2016). Hygro effects on the low-velocity impact behavior of unidirectional CFRP composite plates for aircraft applications. Composite Structures, 135, 276–285. https://doi.org/10.1016/j.compstruct.2015.09.040
  • Aoki, Y., Yamada, K., & Ishikawa, T. (2008). Effect of hygrothermal condition on compression after impact strength of CFRP laminates. Composites Science and Technology, 68, 1376–1383. https://doi.org/10.1016/j.compscitech.2007.11.015
  • Asmare, S., Yoseph, B., & Jamir, T. M. (2023 10). Investigating the impact resistance of E-glass/Polyester composite materials in variable fibre-to- matrix weight ratio composition investigating the impact resistance of E-glass/Polyester composite materials in variable fibre- to-matrix weight ratio C. Cogent Engineering, 10 (1). https://doi.org/10.1080/23311916.2023.2178110.
  • Atas, C., & Dogan, A. (2015). An experimental investigation on the repeated impact response of glass/epoxy composites subjected to thermal ageing. Composites Part B Engineering, 75, 127–134. https://doi.org/10.1016/j.compositesb.2015.01.032
  • Bader, M. G., & Ellis, R. M. (1974). The effect of notches and specimen geometry on the pendulum impact strength of uniaxial cfrp. Composites, 5(6), 253–258. https://doi.org/10.1016/0010-4361(74)90365-6
  • Bandaru, A. K., & Ahmad, S. (2016). Modeling of progressive damage for composites under ballistic impact. Composites Part B Engineering, 93, 75–87. https://doi.org/10.1016/j.compositesb.2016.02.053
  • Behnia, S., Daghigh, V., Nikbin, K., Fereidoon, A., & Ghorbani, J. (2016). Influence of stacking sequence and Notch angle on the Charpy impact behavior of hybrid composites. Mechanics of Composite Materials, 52(4), 489–496. https://doi.org/10.1007/s11029-016-9599-7
  • Berketis, K., Tzetzis, D., & Hogg, P. J. (2008). Materials & Design the influence of long term water immersion ageing on impact damage behavior and residual compression strength of glass fibre reinforced polymer (GFRP). Materials & Design, 29(7), 1300–1310. https://doi.org/10.1016/j.matdes.2007.07.008
  • Bibo, G. A., Hogg, P. J., & Kemp, M. (1995). High-temperature damage tolerance of carbon fibre-reinforced plastics:2 Post-impact compression characteristics. Composites, 26(2), 91–102. https://doi.org/10.1016/0010-4361(95)90408-R
  • Boukhoulda, F. B., Guillaumat, L., Lataillade, J. L., Adda-Bedia, E., & Lousdad, A. (2011). Ageing-impact coupling based analysis upon glass/polyester composite material in hygrothermal environment. Materials & Design, 32(7), 4080–4087. https://doi.org/10.1016/j.matdes.2011.03.009
  • Cervenka, A. (1999). Advantages and Disadvantages of Thermoset and Thermoplastic Matrices for Continuous Fibre Composites. In Mechanics of Composite Materials and Structures (Vol. 361, pp. 289–298). Springer science. 978-94-011-4489-6. https://doi.org/10.1007/978-94-011-4489-6_16
  • Chawla, K. K. (2012). Composite materials: Science and Engineering (3rd ed.). Springer Science & Business Media. https://doi.org/10.1007/978-0-387-74365-3
  • Chen, P., Shen, Z., Xiong, J., Yang, S., Fu, S., & Ye, L. (2006). Failure mechanisms of laminated composites subjected to static indentation. Composite Structures, 75(1–4), 489–495. https://doi.org/10.1016/j.compstruct.2006.04.087
  • Chow, C. P. L., Xing, X. S., & RKY, L. (2007). Moisture absorption studies of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 67(2), 306–313. https://doi.org/10.1016/j.compscitech.2006.08.005
  • Coskun, T., Yar, A., Demir, O., & Sinan, O. (2022). Effects of low ‑ velocity impact on vibration behaviors of polyamide fibre ‑. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(1). https://doi.org/10.1007/s40430-021-03322-9
  • Demir, O., Yar, A., Eskizeybek, V., & Avcı, A. (2023). Combined effect of fiber hybridization and matrix modi fi cation on mechanical properties of polymer composites 2023. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 146442072311625. https://doi.org/10.1177/14644207231162547
  • Dogan, A., & Arman, Y. (2019). The effect of hygrothermal ageing and UV radiation on the low-velocity impact behavior of the glass fibre-reinforced epoxy composites. Iranian Polymer Journal, 28(3), 193–201. https://doi.org/10.1007/s13726-019-00690-x
  • Dogan, A., & Atas, C. (2016). Variation of the mechanical properties of E-glass/epoxy composites subjected to hygrothermal ageing 2015. Journal of Composite Materials, 50(5), 637–646. https://doi.org/10.1177/0021998315580451
  • Dogra, A., Soni, A., & Pai, Y. (2019). An experimental study on the mechanical properties of basalt and banana fibre reinforced hybrid polymer composites. International Journal of Mechanical and Production Engineering Research and Development, 9(1), 263–270. https://doi.org/10.24247/ijmperdfeb201925
  • Dorey, G., Sidey, G. R., & Hutchings, J. (1978). Impact properties of carbon fibre/Kevlar 41978 fibre hydrid composites. Composites, 9(1), 25–32. https://doi.org/10.1016/0010-4361(78)90514-1
  • Evci, C., & Gülgeç, M. (2012). An experimental investigation on the impact response of composite materials. International Journal of Impact Engineering, 43, 40–51. https://doi.org/10.1016/j.ijimpeng.2011.11.009
  • Güneş, A., & Sinan, Ö. (2020 2). Investigation of the effect of surface crack on low ‑ velocity impact response in hybrid laminated composite plates. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42 (6). https://doi.org/10.1007/s40430-020-02422-2.
  • Hawa, A., Abdul Majid, M. S., Afendi, M., Marzuki, H. F. A., Amin, N. A. M., Mat, F., & Gibson, A. G. (2016). Burst strength and impact behavior of hydrothermally aged glass fibre/epoxy composite pipes. Materials & Design, 89, 455–464. https://doi.org/10.1016/j.matdes.2015.09.082
  • Hosur, M. V., Adbullah, M., & Jeelani, S. (2005). Studies on the low-velocity impact response of woven hybrid composites. Composite Structures, 67(3), 253–262. https://doi.org/10.1016/j.compstruct.2004.07.024
  • Hosur, M. V., Jain, K., Chowdhury, F., Jeelani, S., Bhat, M. R., & Murthy, C. R. L. (2007). Low-velocity impact response of carbon/epoxy laminates subjected to cold–dry and cold–moist conditioning. Composite Structures, 79(2), 300–311. https://doi.org/10.1016/j.compstruct.2006.11.011
  • Imamura, T., Yamaguchi, Y., & Imamura, T. (2011). Technique for differentiating alveolar soft part sarcoma from other tumors in paraffin-embedded tissue: Comparison of immunohistochemistry for TFE3 and CD147 and of reverse transcription polymerase chain reaction for ASPSCR1-TFE3 fusion transcript. Human Pathology, 43(3), 356–363. https://doi.org/10.2322/jjsass1969.43.213
  • Imieli, K., & Guillaumat, L. (2004). The effect of water immersion ageing on low-velocity impact behaviour of woven aramid–glass fibre/epoxy composites. Composites Science and Technology, 64(13–14), 2271–2278. https://doi.org/10.1016/j.compscitech.2004.03.002
  • Imielińska, K., & Guillaumat, L. (2004). The effect of water immersion ageing on low-velocity impact behaviour of woven aramid–glass fibre/epoxy composites. Composites Science and Technology, 64(13–14), 2271–2278. https://doi.org/10.1016/j.compscitech.2004.03.002
  • Jefferson, A. J., Srinivasan, S. M., & Arockiarajan, A. (2019). Effect of multiphase fibre system and stacking sequence on low-velocity impact and residual tensile behavior of glass/epoxy composite laminates. Polymer Composites, 40(4), 1450–1462. https://doi.org/10.1002/pc.24884
  • Je, J., Srinivasan, S. M., Arockiarajan, A., & Nath, H. (2019). Parameters in fl uencing the impact response of fi ber-reinforced polymer matrix composite materials: A critical review. Composite Structures, 224, 111007. https://doi.org/10.1016/j.compstruct.2019.111007
  • Kaustav Ghosh, G. K. K. C. Y. (2018). Free vibrational analysis of magneto-rheological aircraft Rib structure. International Journal of Mechanical and Production Engineering Research and Development, 8(2), 837–842. https://doi.org/10.24247/ijmperdapr201895
  • Kaware, K., & Kotambkar, M. (2022). Low velocity impact response and influence of parameters to improve the damage resistance of composite structures/materials: A critical review. International Journal of Crashworthiness, 27(4), 1232–1256. https://doi.org/10.1080/13588265.2021.1914985
  • Kayaaslan, M., Coskun, T., Murat Unlu OSS, U., & Sahin, O. S. (2023). Effects of thickness, fibre orientation and fabric textile on the low-velocity impact performances of thermoset and thermoplastic composites. Journal of Thermoplast Composite Materials, 089270572311585. https://doi.org/10.1177/08927057231158536
  • Kayaaslan, M., Coskun, T., Sahin, O. S., Unlu, U. M., & Kadioglu, F. (2022). Mechanical and dynamic responses of unidirectional/woven carbon fi ber reinforced thermoset and thermoplastic composites after low velocity impact. Polymers & Polymer Composites, 30, 1–11. https://doi.org/10.1177/09673911221119669
  • Kim, J. H., Kim, D. H., Kim, H. S., & Park, B. J. (2005). A study on low velocity impact of woven glass/Phenolic composite laminates Considering environmental effects. Key Engineering Materials, 297–300, 1303–1308. https://doi.org/10.4028/www.scientific.net/kem.297-300.1303
  • Leomand G. C. (1975). Failure mode of composite materials with organic matrices and their consequences in design. AGARD Conference Proceedings, 163(163).
  • Lesser, A. J., & Filippov, A. G. (1994). Mechanisms governing the damage resistance of laminated composites subjected to low-velocity impacts. International Journal of Damage Mechanics, 3(4), 408–432. https://doi.org/10.1177/105678959400300406
  • Li, G., Pang, S. S., Helms, J. E., & Ibekwe, S. I. (2000). Low velocity impact response of GFRP laminates subjected to cycling moistures. Polymer Composites, 21(5), 686–695. https://doi.org/10.1002/pc.10222
  • Maier, R., & Mandoc, A.-C. (2023). Investigation on layer hybridization of glass/carbon fibre woven reinforced composites subjected to low-Speed impact. Journal of Composites Science, 7(2), 83. https://doi.org/10.3390/jcs7020083
  • Mallick, P. K. (2007). Fibre- reinforced composites materials, Manufacturing and Design (3rd ed.). CRC Press Taylor & Francis Group. https://doi.org/10.1201/9781420005981
  • Mathivanan, N. R., & Jerald, J. (2010). Experimental investigation of low-velocity impact characteristics of woven glass fibre epoxy matrix composite laminates of EP3 grade. Materials & Design, 31(9), 4553–4560. https://doi.org/10.1016/j.matdes.2010.03.051
  • Mokhtar, H., Sicot, O., Rousseau, J., Aminanda, Y., & Aivazzadeh, S. (2011). The influence of ageing on the impact damage of carbon epoxy composites. Procedia Engineering, 10, 2615–2620. https://doi.org/10.1016/j.proeng.2011.04.436
  • Moure, M. M., Rubio, I., Loya, J. A., Loya, J. A., & Rodríguez-Millán, M. (2018). Analysis of impact energy absorption by lightweight aramid structures. Composite Structures, 203, 917–926. https://doi.org/10.1016/j.compstruct.2018.06.092
  • Naik, N. K., Ramasimha, R., Arya, H., Prabhu, S. V., & ShamaRao, N. (2001). Impact response and damage tolerance characteristics of glass–carbon/epoxy hybrid composite plates. Composites Part B: Engineering, 32(7), 565–574. https://doi.org/10.1016/S1359-8368(01)00036-1
  • Naik, N. K., Sekher, Y. C., & Meduri, S. (2000). Damage in woven-fabric composites subjected to low-velocity impact. Composites Science and Technology, 60, 731–744. https://doi.org/10.1016/S0266-3538(99)00183-9
  • Naresh, K., Rajalakshmi, K., Vasudevan, A., Senthil Kumaran, S., Velmurugan, R., & Shankar, K. (2018). Effect of nanoclay and different impactor shapes on glass/epoxy composites subjected to quasi-static punch shear loading. Advances in Materials and Processing Technologies, 4(3), 345–357. https://doi.org/10.1080/2374068X.2018.1428879
  • Niu, Y. F., Yan, Y., & Yao, J. W. (2021, 94). Hygrothermal ageing mechanism of carbon fibre/epoxy resin composites based on quantitative characterization of interface structure. Polymer Testing, 94, 107019. https://doi.org/10.1016/j.polymertesting.2020.107019
  • Pai, Y., Dayananda Pai, K., & Vijaya Kini, M. (2023). Effect of ageing conditions on the low velocity impact behavior and damage characteristics of aramid-basalt/epoxy hybrid interply composites. Engineering failure analysis, 152(107492). https://doi.org/10.1016/j.engfailanal.2023.107492
  • Pai, Y., Kini, M. V., & Engineering, A. (2021). Effect of aramid fabric orientation angle on the mechanical characteristics of basalt-aramid/Epoxy hybrid interply composites. Materials Research, 24(5). https://doi.org/10.1590/1980-5373-MR-2021-0209
  • Pai, A., Kini, C. R., Hegde, S., & Satish Shenoy, B. (2023). Thin fibre metal laminates comprising functionally graded ballistic-grade fabrics subjected to mechanical and damping characterization. Thin-Walled Structures, 185, 110628. https://doi.org/10.1016/j.tws.2023.110628
  • Pai, Y., Pai, K. D., Kini, M. V. Materials Today: Proceedings a review on low velocity impact study of hybrid polymer composites. Materials Today: Proceedings. 2021. https://doi.org/10.1016/j.matpr.2021.05.390.
  • Pai, Y., Pai, K. D., Kini, M. V., & Wong, E. (2022). Experimental investigations on the moisture absorption and mechanical behavior of basalt- aramid/epoxy hybrid interply composites under different ageing environments absorption and mechanical behavior of basalt-aramid/epoxy hybrid interply composite. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2080354
  • Pan, Z., Zhao, Q., Wei, Q., Wu, Z., & Li, N. (2023). Thin-Walled Structures heat treatment on the multiple-impact mechanical responses and damage behaviors of 3D and 2D woven GF/PP/epoxy composites ✩. Thin-Walled Structures, 183, 110415. https://doi.org/10.1016/j.tws.2022.110415
  • Paturel, A., & Dhakal, H. N. (2020). Influence of water absorption on the low velocity falling weight impact damage behavior of flax/glass reinforced vinyl ester hybrid composites. Molecules, 25(2), 1–16. https://doi.org/10.3390/molecules25020278
  • Placet, V. (2023). Thermal and hydrothermal ageing of flax/polypropylene composites and their stainless steel hybrid laminates. https://doi.org/10.1016/j.compositesa.2023.107582
  • Po, H. M., & Tak, L. K. (2012). Design of an impact resistant glass fibre/epoxy composites using short silk fibres. Materials & Design, 35, 664–669. https://doi.org/10.1016/j.matdes.2011.10.003
  • Qiao, P., Yang, M., & Bobaru, F. (2008). Impact Mechanics and high-energy absorbing materials: Review. Journal of Aerospace Engineering, 21(4), 235–248. https://doi.org/10.1061/(asce)0893-1321
  • Ray, B. C. (2006). Temperature effect during humid ageing on interfaces of glass and carbon fibres reinforced epoxy composites. Journal of Colloid and Interface Science, 298(1), 111–117. https://doi.org/10.1016/j.jcis.2005.12.023
  • Richardson, M. O. W., & Wisheart, M. J. (1996). Review of low-velocity of composite materials. Composites Part A Applied Science and Manufacturing, 27A(12), 1123–1131. https://doi.org/10.1016/1359-835X(96)00074-7
  • Rubio-González, C., José-Trujillo, E., Rodríguez-González, J. A., Mornas, A., & Talha, A. (2020). Low-velocity impact behavior of glass fibre-MWCNT/polymer laminates exposed to seawater and distilled water ageing. Polymer Composites, 41(6), 2181–2197. https://doi.org/10.1002/pc.25530
  • Sadighi, M., & Alderliesten, R. (2022a). Impact fatigue, multiple and repeated low-velocity impacts on FRP composites: A review. Composite Structures, 297, 115962. https://doi.org/10.1016/j.compstruct.2022.115962
  • Sadighi, M., & Alderliesten, R. (2022b). Impact fatigue, multiple and repeated low-velocity impacts on FRP composites: A review. Composite Structures, 297, 115962. https://doi.org/10.1016/j.compstruct.2022.115962
  • Safri, S. N. A., Sultan, M. T. H., Yidris, N., & Mustapha, F. (2014). Low velocity and high velocity impact test on composite materials – a review. The International Journal Of Engineering And Science, 3(9), 50–60.
  • Salman, S. D., Leman, Z., Sultan, M. T. H., Ishak, M. R., & Cardona, F. (2015). Influence of resin system on the energy absorption capability and morphological properties of plain woven kenaf composites. IOP Conference Series: Materials Science & Engineering, 100. https://doi.org/10.1088/1757-899X/100/1/012053
  • Santiago, R., Cantwell, W., & Alves, M. (2017). Impact on thermoplastic fibre-metal laminates: Experimental observations. Composite Structures, 159, 800–817. https://doi.org/10.1016/j.compstruct.2016.10.011
  • Sarasini, F., Sorrentino, L., De, V. D., Auria, M. D., Tirill, J., & Sapienza, L. (2017). Flexural and low velocity impact characterization of thermoplastic composites based on PEN and high performance woven fabrics. Polymer Composites, 39(8), 2942–2951. . https://doi.org/10.1002/pc
  • Sarasini, F., Tirillò, J., Valente, M., Ferrante, L., Cioffi, S., Iannace, S., & Sorrentino, L. (2013). Materia ls and Design hybrid composites based on aramid and basalt woven fabrics: Impact damage modes and residual flexural properties. Materials & Design, 49, 290–302. https://doi.org/10.1016/j.matdes.2013.01.010
  • Shah, S. Z. H., Karuppanan, S., Megat-Yuso, P. S. M., & Sajid, Z. (2019). Impact resistance and damage tolerance of fi ber reinforced composites: A review. Composite Structures, 217, 100–121. https://doi.org/10.1016/j.compstruct.2019.03.021
  • Shaoquan, W., Shangli, D., Yu, G., Baichen, W., Qi, Y., & Ozbakkaloglu, T. (2019). Low-velocity impact behavior of a carbon/Bismaleimide composite Proposed for supersonic flight simulation after hygrothermal cycling. Polymer Composites, 2019(S2), E1588–E1599. https://doi.org/10.1002/pc.25092
  • Shetty, K., Bojja, R., & Srihari, S. (2020). Effect of hygrothermal ageing on the mechanical properties of IMA/M21E aircraft-grade CFRP composite. Advanced Composites Letters, 29, 1–9. https://doi.org/10.1177/2633366X20926520
  • Stephen, C., Shivamurthy, B., Mohan, M., Mourad, A. I., Selvam, R., & Thimmappa, B. H. S. (2022). A low velocity impact behavior of fabric reinforced polymer composites – a review. Engineered Science, 18, 75–97. https://doi.org/10.30919/es8d670
  • Striewe, J., Reuter, C., Sauerland, K. H., & Tröster, T. (2018). Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Structure, 123, 501–508. https://doi.org/10.1016/j.tws.2017.11.011
  • Tanaka, K., Minoshima, K., Grela, W., & Komai, K. (2002). Characterization of the aramid/epoxy interfacial properties by means of pull-out test and influence of water absorption. Composites Science and Technology, 62(16), 2169–2177. https://doi.org/10.1016/S0266-3538(02)00147-1
  • Taraghi, I., Fereidoon, A., & Taheri-Behrooz, F. (2014). Low-velocity impact response of woven Kevlar/epoxy laminated composites reinforced with multi-walled carbon nanotubes at ambient and low temperatures. Materials & Design, 53, 152–158. https://doi.org/10.1016/j.matdes.2013.06.051
  • Umer, R., Alhussein, H., Zhou, J., & Cantwell, W. J. (2017). The mechanical properties of 3D woven composites. Journal of Composite Materials, 51, 1703–1716. https://doi.org/10.1177/0021998316681187
  • Vaddadi, P., Nakamura, T., & Singh, R. P. (2003). Transient hygrothermal stresses in fibre reinforced composites: A heterogeneous characterization approach. Composites Part A Applied Science and Manufacturing, 34(8), 719–730. https://doi.org/10.1016/S1359-835X(03)00135-0
  • van Hoof J. (1999). Modelling of impact induced Delmnation in composite materials. Carleton University.
  • Vasudevan, A., Senthil Kumaran, S., Naresh, K., & Velmurugan, R. (2020). Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. International Journal of Crashworthiness, 25(1), 9–23. https://doi.org/10.1080/13588265.2018.1511234
  • Vasudevan, A., Senthil Kumaran, S., Naresh, K., Velmurugan, R., & Shankar, K. (2018). Advanced 3D and 2D damage assessment of low velocity impact response of glass and Kevlar fibre reinforced epoxy hybrid composites. Advances in Materials and Processing Technologies, 4(3), 493–510. https://doi.org/10.1080/2374068X.2018.1465310
  • Vieille, B., Aucher, J., & Taleb, L. (2012). Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions. Materials & Design, 35, 707–719. https://doi.org/10.1016/j.matdes.2011.10.037
  • Voth, M. M. (2018). Characterization of the effects of hygrothermal-ageing on mechanical performance and damage progression of Fibreglass epoxy composite. Montana State University Bozeman, Montana.
  • Wang, X., Hu, B., Feng, Y., Liang, F., Mo, J., Xiong, J., & Qiu, Y. (2008). Low velocity impact properties of 3D woven basalt/aramid hybrid composites. Composites Science and Technology, 68(2), 444–450. https://doi.org/10.1016/j.compscitech.2007.06.016
  • Yahaya, R., Jawaid, M., & Leman, Z. (2014). Mechanical performance of woven kenaf-Kevlar hybrid composites. Journal of Reinforced Plastics and Composites, 33(24), 2242–2254. https://doi.org/10.1177/0731684414559864
  • Yahaya, R., Sapuan, S. M., Jawaid, M., Leman ESZ, Z., & Zainudin, E. S. (2015). Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Defence Technology, 12(1), 52–58. https://doi.org/10.1016/j.dt.2015.08.005
  • Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016). Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Defence Technology, 12(1), 52–58. https://doi.org/10.1016/j.dt.2015.08.005
  • Yan, H. P., Tak, L. K., Kwan, C. L., Leng, J., & Hui, D. (2018). Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Composites Part B: Engineering, 133, 86–90. https://doi.org/10.1016/j.compositesb.2017.09.026
  • Yousaf, M., Zhou, C., Yang, Y., & Wang, L. (2022). Numerical study of the hygrothermal effects on low velocity impact induced indentation and its rebound in composite laminate. Aerospace, 9(12), 802. https://doi.org/10.3390/aerospace9120802
  • Zai, B. A., Khan, M. A., Park, M. K., Shahzad, M., Shahzad, M. A., Nisar, S., Khan, S. Z., Khan, K., & Shah, A. (2018). Low-velocity impact characterization of fibre-reinforced composites with hygrothermal effect. Journal of Testing and Evaluation, 47(1), 20170620–20170660. https://doi.org/10.1520/JTE20170620
  • Zai B. A., Khan, M. A., Park, M. K., Shahzad, M., Shahzad, M. A., Nisar, S., Khan, S. Z., Khan, K., & Shah, A. (2019). Low-velocity impact characterization of fibre-reinforced composites with hygrothermal effect. Journal of Testing and Evaluation, 47(1), 350–360. . https://doi.org/10.1520/JTE20170620
  • Zanni-Deffarges, M. P., & Shanahan, M. E. R. (1995). Diffusion of water into an epoxy adhesive: Comparison between bulk behavior and adhesive joints. International Journal of Adhesion and Adhesives, 15(3), 137–142. https://doi.org/10.1016/0143-7496(95)91624-F
  • Zhang, F. Investigation of polymer ageing mechanisms using molecular Simulations: A review. 2023.
  • Zhong, Y., Cheng, M., Zhang, X., Hu, H., Cao, D., & Li, S. (2019). Hygrothermal durability of glass and carbon fiber reinforced composites – a comparative study. Composite Structures, 211, 134–143. https://doi.org/10.1016/j.compstruct.2018.12.034
  • Zhong, Y., & Joshi, S. C. (2015a). Impact behavior and damage characteristics of hygrothermally conditioned carbon epoxy composite laminates. Materials & Design, 65, 254–264. https://doi.org/10.1016/j.matdes.2014.09.030
  • Zhong, Y., & Joshi, S. C. (2015b). Impact resistance of hygrothermally conditioned composite laminates with different lay-ups. Journal of Composite Materials, 49, 829–841. https://doi.org/10.1177/0021998314526078
  • Zhou, S., Jia, Y. X., Xu, L., Wang, L., & Hui, L. (2021). Study on the damage behavior of carbon fibre composite after low-velocity impact under hygrothermal ageing. Journal of Applied Polymer Science, 138(17), 1–10. https://doi.org/10.1002/app.50289
  • Zubair, M., & Pai, Y. (2019). Review on impact response of polymer composites. Journal of Mechanical Engineering Research and Developments, 42(4), 238–242. https://doi.org/10.26480/jmerd.04.2019.238.242