656
Views
1
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Enhancement in heat transfer characteristics by using truncated conical turbulators in a double pipe heat exchanger under turbulent conditions

, , & ORCID Icon
Article: 2250069 | Received 19 Apr 2023, Accepted 16 Aug 2023, Published online: 27 Aug 2023

References

  • Akyürek, E. F., Gelics, K., CSahin, B., & Manay, E. (2018). Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Results in Physics, 9, 376–20. https://doi.org/10.1016/j.rinp.2018.02.067
  • Benabderrahmane, A., Benazza, A., & Hussein, A. K. (2020). Heat transfer enhancement analysis of tube receiver for parabolic trough solar collector with central corrugated insert. Journal of Heat Transfer, 142(6), 62001. https://doi.org/10.1115/1.4046440
  • Bhuiya, M. M. K., Chowdhury, M. S. U., Saha, M., & Islam, M. T. (2013). Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. International Communications in Heat and Mass Transfer, 46, 49–57. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.012
  • Eiamsa-Ard, S., & Promvonge, P. (2010). Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts. International Journal of Heat and Mass Transfer, 53(7–8), 1364–1372. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.023
  • Ge, M., Manikkam, P., Ghossein, J., Subramanian, R. K., Coutier-Delgosha, O., & Zhang, G. (2022). Dynamic mode decomposition to classify cavitating flow regimes induced by thermodynamic effects. Energy, 254, 124426. https://doi.org/10.1016/j.energy.2022.124426
  • Ge, M., Zhang, G., Petkovšek, M., Long, K., & Coutier-Delgosha, O. (2022). Intensity and regimes changing of hydrodynamic cavitation considering temperature effects. Journal of Cleaner Production, 338, 130470. https://doi.org/10.1016/j.jclepro.2022.130470
  • Ghachem, K., Hussein, A. K., Kolsi, L., & Younis, O. (2021). CNT–water nanofluid magneto-convective heat transfer in a cubical cavity equipped with perforated partition. The European Physical Journal Plus, 136(4), 1–22. https://doi.org/10.1140/epjp/s13360-021-01387-y
  • Gilani, S. E., Al-Kayiem, H. H., Woldemicheal, D. E., & Gilani, S. I. (2017). Performance enhancement of free convective solar air heater by pin protrusions on the absorber. Solar Energy, 151, 173–185. https://doi.org/10.1016/j.solener.2017.05.038
  • Gill, R. S., Hans, V. S., Saini, J. S., & Singh, S. (2017). Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct. Renewable Energy, 104, 148–162. https://doi.org/10.1016/j.renene.2016.12.002
  • Hussein, A. K., Rout, S. K., Fathinia, F., Chand, R., & Mohammed, H. A. (2015). Natural convection in a triangular top wall enclosure with a solid strip. Journal Engineering Science Technology, 10(10), 1326–1341.
  • Karwa, R., & Chitoshiya, G. (2013). Performance study of solar air heater having v-down discrete ribs on absorber plate. Energy, 55, 939–955. https://doi.org/10.1016/j.energy.2013.03.068
  • Kazemi Moghadam, H., Mousavi Ajarostaghi, S. S., & Poncet, S. (2020). Extensive numerical analysis of the thermal performance of a corrugated tube with coiled wire. Journal of Thermal Analysis and Calorimetry, 140(3), 1469–1481. https://doi.org/10.1007/s10973-019-08876-4
  • Kumar, A., & Prasad, B. N. (2000). Investigation of twisted tape inserted solar water heaters—heat transfer, friction factor and thermal performance results. Renewable Energy, 19(3), 379–398. https://doi.org/10.1016/S0960-1481(99)00061-0
  • Kumar, B., Srivastava, G. P., Kumar, M., & Patil, A. K. (2018). A review of heat transfer and fluid flow mechanism in heat exchanger tube with inserts. Chemical Engineering & Processing - Process Intensification, 123, 126–137. https://doi.org/10.1016/j.cep.2017.11.007
  • Kumar, S., Dinesha, P., Narayanan, A., & Nanda, R. (2019). Parametric study on the heat transfer characteristics in a circular tube with helical tape insert under laminar flow conditions. Heat Transfer-Asian Research, 48(7), 3384–3398. https://doi.org/10.1002/htj.21553
  • Kumar, S., Dinesha, P., Narayanan, A., & Nanda, R. (2020). Effect of hemispherical turbulators in a double-pipe heat exchanger for heat transfer augmentation. Journal of Turbulence, 21(3), 166–185. https://doi.org/10.1080/14685248.2020.1742344
  • Lanjewar, A., Bhagoria, J. L., & Sarviya, R. M. (2011). Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate. Energy, 36(7), 4531–4541. https://doi.org/10.1016/j.energy.2011.03.054
  • Li, J., Hou, S., Teng, D., & Shen, G. (2023). Experimental research on enhanced heat transfer of double-pipe exchanger with audible acoustic field. International Journal of Heat and Mass Transfer, 201, 123565. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123565
  • Manjunath, M. S., Karanth, K. V., & Sharma, N. Y. (2017). Numerical analysis of the influence of spherical turbulence generators on heat transfer enhancement of flat plate solar air heater. Energy, 121, 616–630. https://doi.org/10.1016/j.energy.2017.01.032
  • Mathanraj, V., Krishna, V. L., Babu, J. L. V., & Kumar, S. A. (2018). Experimental investigation on heat transfer in double pipe heat exchanger employing triangular fins. IOP Conference Series: Materials Science & Engineering, 402(1), 12137. https://doi.org/10.1088/1757-899X/402/1/012137
  • Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
  • Mousavi Ajarostaghi, S. S., Aghanezhad, M., Davudi, H., & Mohammadzadeh Amiri, M. (2022). Numerical evaluation of the heat transfer enhancement in a tube with a curved conical turbulator insert. International Journal of Ambient Energy, 43(1), 5218–5231. https://doi.org/10.1080/01430750.2021.1945490
  • Mousavi Ajarostaghi, S. S., Zaboli, M., Javadi, H., Badenes, B., & Urchueguia, J. F. (2022). A review of recent passive heat transfer enhancement methods. Energies, 15(3), 986. https://doi.org/10.3390/en15030986
  • Murugesan, P., Mayilsamy, K., Suresh, S., & Srinivasan, P. S. S. (2011). Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert. International Communications in Heat and Mass Transfer, 38(3), 329–334. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.010
  • Noorbakhsh, M., Zaboli, M., & Mousavi Ajarostaghi, S. S. (2020). Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. Journal of Thermal Analysis and Calorimetry, 140(3), 1341–1353. https://doi.org/10.1007/s10973-019-08509-w
  • Nouri Kadijani, O., Kazemi Moghadam, H., Mousavi Ajarostaghi, S. S., Asadi, A., & Saffari Pour, M. (2022). Hydrothermal performance of humid air flow in a rectangular solar air heater equipped with V-shaped ribs. Energy Science and Engineering, 10(7), 2276–2289. https://doi.org/10.1002/ese3.1136
  • Olfian, H., Zabihi Sheshpoli, A., & Mousavi Ajarostaghi, S. S. (2020). Numerical evaluation of the thermal performance of a solar air heater equipped with two different types of baffles. Heat Transfer, 49(3), 1149–1169. https://doi.org/10.1002/htj.21656
  • Prasad, B. N., & Saini, J. S. (1988). Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Solar Energy, 41(6), 555–560. https://doi.org/10.1016/0038-092X(88)90058-8
  • Promthaisong, P., & Eiamsa-Ard, S. (2019). Fully developed periodic and thermal performance evaluation of a solar air heater channel with wavy-triangular ribs placed on an absorber plate. International Journal of Thermal Sciences, 140, 413–428. https://doi.org/10.1016/j.ijthermalsci.2019.03.010
  • Ravi, R. K., & Saini, R. P. (2018). Nusselt number and friction factor correlations for forced convective type counter flow solar air heater having discrete multi V shaped and staggered rib roughness on both sides of the absorber plate. Applied Thermal Engineering, 129, 735–746. https://doi.org/10.1016/j.applthermaleng.2017.10.080
  • Rostami, S., Sepehrirad, M., Dezfulizadeh, A., Hussein, A. K., Shahsavar Goldanlou, A., & Shadloo, M. S. (2020). Exergy optimization of a solar collector in flat plate shape equipped with elliptical pipes filled with turbulent nanofluid flow: A study for thermal management. Water, 12(8), 2294. https://doi.org/10.3390/w12082294
  • Saedodin, S., Zaboli, M., & Ajarostaghi, S. S. M. (2021). Hydrothermal analysis of heat transfer and thermal performance characteristics in a parabolic trough solar collector with turbulence-Inducing elements. Sustainable Energy Technologies and Assessments, 46, 101266. https://doi.org/10.1016/j.seta.2021.101266
  • Salem, M. R., Eltoukhey, M. B., Ali, R. K., & Elshazly, K. M. (2018). Experimental investigation on the hydrothermal performance of a double-pipe heat exchanger using helical tape insert. International Journal of Thermal Sciences, 124, 496–507. https://doi.org/10.1016/j.ijthermalsci.2017.10.040
  • Sheikholeslami, M., & Ganji, D. D. (2016). Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators. Energy Conversion and Management, 127, 112–123. https://doi.org/10.1016/j.enconman.2016.08.090
  • Wongcharee, K., & Eiamsa-Ard, S. (2011). Heat transfer enhancement by twisted tapes with alternate-axes and triangular, rectangular and trapezoidal wings. Chemical Engineering and Processing: Process Intensification, 50(2), 211–219. https://doi.org/10.1016/j.cep.2010.11.012
  • Zaboli, M., Mousavi Ajarostaghi, S. S., Saedodin, S., & Saffari Pour, M. (2021). Thermal performance enhancement using absorber tube with inner helical axial fins in a parabolic trough solar collector. Applied Sciences, 11(16), 7423. https://doi.org/10.3390/app11167423
  • Zaboli, M., Nourbakhsh, M., & Ajarostaghi, S. S. M. (2022). Numerical evaluation of the heat transfer and fluid flow in a corrugated coil tube with lobe-shaped cross-section and two types of spiral twisted tape as swirl generator. Journal of Thermal Analysis and Calorimetry, 147(1), 999–1015. https://doi.org/10.1007/s10973-020-10219-7
  • Zhang, D., Jiang, E., Zhou, J., Shen, C., He, Z., & Xiao, C. (2020). Investigation on enhanced mechanism of heat transfer assisted by ultrasonic vibration. International Communications in Heat and Mass Transfer, 115, 104523. https://doi.org/10.1016/j.icheatmasstransfer.2020.104523
  • Zhang, L., Guo, H., Wu, J., & Du, W. (2012). Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators. Heat and Mass Transfer, 48(7), 1113–1124. https://doi.org/10.1007/s00231-011-0959-5