750
Views
0
CrossRef citations to date
0
Altmetric
Computer Science

A continuous time model for Karnatic flute music synthesis

, &
Article: 2251755 | Received 07 Dec 2022, Accepted 13 Aug 2023, Published online: 03 Sep 2023

References

  • Ashtamoorthy, A., Prasad, P., Dhar, S., & Vijayasenan, D. (2018). Frequency contour modeling to synthesize natural flute renditions for Carnatic music. Proceedings of the 2018 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India. (pp.172–20). IEEE.
  • Ayers, L. (2003). Synthesizing trills for the Chinese dizi. Proceedings of the International Computer Music Conference, ICM, Bangalore, India.
  • Ayers, L. (2004). Synthesizing timbre tremolos and flutter tonguing on wind instruments. Proceedings of the International Computer Music Conference, ICMC, Miami, Florida, USA. (pp. 390–393).
  • Ayers, L. (2005). Synthesising Chinese flutes using C sound. Organised Sound, 10(1), 37–49. https://doi.org/10.1017/S1355771805000658
  • Benade, A. H. (1990). Fundamentals of musical acoustics. Dover Publications.
  • Boersma, P., & Weenink, D. (2001). PRAAT, a system for doing phonetics by computer. Glot International, 5(9), 341–345. https://cir.nii.ac.jp/crid/1572261550900588928
  • Conard, N., Malina, M., & Münzel, S. (2009, July). New flutes document the earliest musical tradition in Southwestern Germany. Nature, 460(7256), 737–740. https://doi.org/10.1038/nature08169
  • Dïaz, A. and Mendes, R. (2015). Analysis synthesis of the Andean Quena via harmonic Band Wavelet Transform. Proceedings of the Digital Audio Effects (DAFx-15), Trondheim, Norway (pp. 433–437).
  • Donahue, C., McAuley, J., & Puckette, M. (2018). Adversarial audio synthesis. arXiv Preprint arXiv: 1802.04208.
  • Engel, J. et al. (2015). Neural audio synthesis of musical notes with WaveNet autoencoders. Proceedings of the International Conference on Machine Learning, Sydney, Australia (pp. 1068–1077).
  • Engel, J., et al. (2019). Gansynth: Adversarial neural audio synthesis. arXiv Preprint arXiv: 1902.08710.
  • Hawthorne, C., et al. (2018). Enabling factorized piano music modeling and generation with the MAESTRO dataset. arXiv Preprint arXiv: 1810.12247.
  • Helmholtz, H. L. (1954). On the Sensations of tone, translated by AJ Ellis. Dover Publications.
  • Horner, A., & Ayers, L. (1998). Modeling acoustic wind instruments with contiguous group synthesis. Journal of the Audio Engineering Society, 46(10), 868–879.
  • Karaikudi Subramanian, S. GAAYAKA. https://carnatic2000.tripod.com/gaayaka6.html
  • Karaikudi Subramanian, S., Wyse, L., & McGee, K. (2011). Modeling speed doubling in carnatic music. ICMC. https://lonce.org/Publications/publications/modeling-speed-doubling-in-carnatic-music.pdf
  • Keefe, D. H. (1990). Woodwind air column models. The Journal of the Acoustical Society of America, 88(1), 35–51. https://doi.org/10.1121/1.399911
  • Kreutzer, C., Walker, J., and O’Neill, M. (2008). A parametric model for spectral sound synthesis of musical sounds. Proceedings of the 2008 International Conference on Audio, Language and Image Processing, Shanghai, China (pp. 633–637).IEEE
  • Kumar, K., Kumar, R., De Boissiere, T., Gestin, L., Teoh, W. Z., Sotelo, J., & Courville, A. C. (2019). Melgan: Generative adversarial networks for conditional waveform synthesis. Advances in Neural Information Processing Systems, 32.
  • Marafioti, A. et al. (2019). Adversarial generation of time-frequency features with application in audio synthesis. Proceedings of the International Conference on Machine Learning, Long Beach, California (pp. 4352–4362). PMLR.
  • McIntyre, M. E., Schumacher, R. T., & Woodhouse, J. (1983). On the oscillations of musical instruments. The Journal of the Acoustical Society of America, 74(5), 1325–1345. https://doi.org/10.1121/1.390157
  • Polotti, P., & Evangelista, G. (2001). Analysis and synthesis of pseudo-periodic 1/f-like noise by means of wavelets with Applications to digital audio. EURASIP Journal on Advances in Signal Processing, 2001(1), 584201. https://doi.org/10.1155/S1110865701000129
  • Polotti, P., & Evangelista, G. (2007). Fractal additive synthesis. IEEE Signal Processing Magazine, 24(2), 105–115. https://doi.org/10.1109/MSP.2007.323275
  • Ramamurthy, S. and Raghavan, M. (2013). Filter design for synthesis of musical notes: A multidimensional feature-based approach. Proceedings of the 2013 IEEE International Conference on Signal and Image Processing Applications, Melaka, Malaysia (pp. 106–111).
  • Rocamora, M., Lopez, E., and Jure, L. (2009) Wind instruments synthesis toolbox for generation of music audio signals with labeled partials. Proceedings of the 2009 Brazilian Symposium on Computer Music SBCM09, Recife, Brazil (pp. 2–4).
  • Scavone, G. P., & Cook, P. R. (1998). Real-time computer modeling of woodwind instruments. Proceedings of the International Symposium on Musical Acoustics (ISMA-98), Leavenworth, WA (pp. 197–202).
  • Series, B. S. (2019). Recommendation ITU-R BS. 1284-2, General methods for the subjective assessment of sound quality. ITU-R Recommendation BS.
  • Serra, X., et al. (1997). Musical sound modeling with sinusoids plus noise. Musical Signal Processing, 91–122.
  • Serra, X., & Smith, J. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. (1990). Computer Music Journal, 14(4), 12–24. issn: 01489267, 15315169. https://doi.org/10.2307/3680788
  • Smith, J. O., III. (1991). Viewpoints on the history of digital synthesis. Proceedings of the International Computer Music Conference, ICMC, Quebec, Canada (pp. 1–10).
  • Strong, W., & Clark, M. (1967). Synthesis of wind-instrument tones. The Journal of the Acoustical Society of America, 41(1), 39–52. https://doi.org/10.1121/1.1910327
  • Suyun, F. and Yibiao, Y. (2016). Improve music synthesis quality by particular harmonic spectrum interpolation based on sinusoidal model. Proceedings of the 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China (pp. 183–186). IEEE.
  • Välimäki, V., Hänninen, R., and Karjalainen, M. (1996). An improved digital waveguide model of flute-implementation Issues. Proceedings of the International Computer Music Conference, Hong Kong (pp. 1–4). Citeseer.
  • Valimaki, V., Karjalainen, M., Jánosy, Z., & Laine, U. K. (1992). A real-time DSP implementation of a flute model. Proceedings of the International Conference Acoustics, Speech Signal Processing (Vol. 2, pp. 249–252). IEEE Computer Society.
  • Välimäki, V., Karjalainen, M., and Laakso, T. I. (1993).Modeling of woodwind bores with finger holes. Proceedings of the International Computer Music Conference, ICMC 1993, Tokyo, Japan (pp. 32–39).
  • van den Oord, A., et al. (2016). Wavenet: A generative model for raw audio. arXiv Preprint arXiv: 1609.03499.
  • Verma, T. S., & Meng, T. H. (2000). Extending spectral modeling synthesis with transient modeling synthesis. Computer Music Journal, 24(2), 47–59. https://doi.org/10.1162/014892600559317
  • Viraraghavan, V., Gavas, R., Murthy, H., & Aravind, R. (2019). Visualizing carnatic music as projectile motion in a uniform gravitational field. Proceedings of the Workshop on Speech, Music and Mind 2019, Quebec, Canada (pp. 31–35).
  • Ystad, S., & Voinier, T. (2001). A virtually real flute. Computer Music Journal, 25(2), 13–24. https://doi.org/10.1162/014892601750302552