360
Views
0
CrossRef citations to date
0
Altmetric
ELECTRICAL & ELECTRONIC ENGINEERING

Revisiting multi-domain empirical modelling of light-emitting diode luminaire

ORCID Icon &
Article: 2288423 | Received 27 Apr 2021, Accepted 21 Nov 2023, Published online: 14 Dec 2023

References

  • Abou-Seido, A. I., Nowak, B., & Chu, C. (2004, July). Fitted Elmore delay: a simple and accurate interconnect delay model. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(7), 691–20. https://doi.org/10.1109/TVLSI.2004.830932
  • Adrian, W. (2003). Spectral sensitivity of the pupillary system. Clinical and Experimental Optometry, 86(4), 235–238. https://doi.org/10.1111/j.1444-0938.2003.tb03111.x
  • Alexeev, A., Onushkin, G., Linnartz, J.-P., & Martin, G. (2019). Multiple heat source thermal modeling and transient analysis of LEDs. Energies, 12(10), 1860. https://doi.org/10.3390/en12101860
  • Avci, M., & Yamacli, S. (2010). An improved Elmore delay model for vlsi interconnects. Mathematical and Computer Modelling, 51(7), 908–914. 2008 International Workshop on Scientific Computing in Electronics Engineering (WSCEE 2008) https://doi.org/10.1016/j.mcm.2009.08.024
  • Baran, K., Leśko, M., Wachta, H., & Różowicz, A. (2019). Thermal modeling and simulation of high power led module. AIP Conference Proceedings, 2078(1), 020048.
  • Baran, K., Różowicz, A., Wachta, H., & Różowicz, S. (2020). Modeling of selected lighting parameters of led panel. Energies, 13(14), 3583. https://doi.org/10.3390/en13143583
  • Baran, K., Różowicz, A., Wachta, H., Różowicz, S., & Mazur, D. (2019). Thermal analysis of the factors influencing junction temperature of led panel sources. Energies, 12(20), 3941. https://doi.org/10.3390/en12203941
  • Baureis, P. (2005, September 16). Compact modeling of electrical, thermal and optical led behavior. In Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005. (pp. 145–148).
  • Bender, V. C., Cardoso, A. S., Flores, G. C., Rech, C., and Marchesan, T. B. (2012, October 25–28). Electrothermal feedback of a led lighting system: Modeling and control. In IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, (pp. 4545–4550).
  • Bergman, L., & McHale, J. L. (2012). Handbook of luminescent Semiconductor materials. CRC Press.
  • Celik, M., Pileggi, L., & Odabasioglu, A. (2002). The Elmore Delay. Springer US.
  • Chen, H. T., Tao, X. H., & Hui, S. Y. R. (2012, April). Estimation of optical power and heat-dissipation coefficient for the photo-electro-thermal theory for led systems. IEEE Transactions on Power Electronics, 27(4), 2176–2183. https://doi.org/10.1109/TPEL.2011.2165736
  • Chen, Y., Zhang, M., & He, G. (2013, October). Comments on “maximum white luminous efficacy of radiation versus color rendering index and color temperature: Exact results and a useful analytic expression”. Journal of Display Technology, 9(10), 859–860. https://doi.org/10.1109/JDT.2013.2279275
  • Ching, C. P., Lee, Z. Y., Lee, S. Y., and Devarajan, M. (2012, September 19–21). Analysis on optical properties for various types of light emitting diode. In 2012 10th IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, (pp. 388–391).
  • Chiu, H. J., Lo, Y. K., Chen, J. T., Cheng, S. J., Lin, C. Y., & Mou, S. C. (2010, February). A high-efficiency dimmable LED driver for low-power lighting applications. IEEE Transactions on Industrial Electronics, 57(2), 735–743. https://doi.org/10.1109/TIE.2009.2027251
  • DIAL. (2016, June). Efficiency of LEDs: The highest luminous efficacy of a white LED. DIALux Academy. https://www.dial.de/en-GB/projects/efficiency-of-leds-the-highest-luminous-efficacy-of-a-white-led
  • Edwards, D. and Nguyen, H. (2016). Semiconductor and IC package thermal metrics. Texas Instruments Application Report.
  • Farkas, G., Vader, Q. V., Poppe, A., & Bognar, G. (2005, March). Thermal investigation of high power optical devices by transient testing. IEEE Transactions on Components and Packaging Technologies, 28(1), 45–50. https://doi.org/10.1109/TCAPT.2004.843197
  • Fuada, T., Adiono, S., Putra, A. P., & Aska, Y. (2017). {LED} driver design for indoor lighting and low-rate data transmission purpose. Optik - International Journal for Light and Electron Optics, 4(15), –. https://doi.org/10.4108/eai.13-12-2017.153469
  • Fulmek, P., Langer, G., Wenzl, F. P., Nemitz, W., Schweitzer, S., Hoschopf, H., and Nicolics, J. (2014, May 7–11). Direct junction temperature measurement in high-power LEDs. In Proceedings of the 2014 37th International Spring Seminar on Electronics Technology, Dresden, Germany, (pp. 58–63).
  • Górecki, K., & Ptak, P. (2020). Thermal, photometric and radiometric properties of multi-color LEDs situated on the common pcb. Electronics, 9(10), 1672. https://doi.org/10.3390/electronics9101672
  • Górecki, K., & Ptak, P. (2021). Compact modelling of electrical, optical and thermal properties of multi-colour power LEDs operating on a common pcb. Energies, 14(5), 1286. https://doi.org/10.3390/en14051286
  • Gupta, R., Tutuianu, B., & Pileggi, L. T. (1997, January). The Elmore delay as a bound for rc trees with generalized input signals. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16(1), 95–104. https://doi.org/10.1109/43.559334
  • Hui, R. (2017). Photo-electro-thermal theory for LED systems: Basic theory and applications. Cambridge University Press.
  • Hui, S. Y. R., Chen, H., & Tao, X. (2012, November). An extended photoelectrothermal theory for led systems: A tutorial from device characteristic to system design for general lighting. IEEE Transactions on Power Electronics, 27(11), 4571–4583. https://doi.org/10.1109/TPEL.2012.2188648
  • Hui, S. Y. R., Li, S. N., Tao, X. H., Chen, W., and Ng, W. M. (2010, February 21–25). A novel passive off-line light-emitting diode (led) driver with long lifetime. In 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), (pp. 594–600).
  • Hui, S. Y., & Qin, Y. X. (2009, August). A general photo-electro-thermal theory for light emitting diode (LED) systems. IEEE Transactions on Power Electronics, 24(8), 1967–1976. https://doi.org/10.1109/TPEL.2009.2018100
  • Hung, P.-C., & Tsao, J. Y. (2013, June). Maximum white luminous efficacy of radiation versus color rendering index and color temperature: Exact results and a useful analytic expression. Journal of Display Technology, 9(6), 405–412. https://doi.org/10.1109/JDT.2012.2224638
  • Ibrahim, M. S., Fan, J., Yung, W. K., Jing, Z., Fan, X., van Driel, W., & Zhang, G. (2021, May). System level reliability assessment for high power light-emitting diode lamp based on a bayesian network method. Measurement, 176, 109191. https://doi.org/10.1016/j.measurement.2021.109191
  • Janicki, M., Ptak, P., Torzewicz, T., & Górecki, K. (2020). Compact thermal modeling of modules containing multiple power LEDs. Energies, 13(12), 3130. https://doi.org/10.3390/en13123130
  • Janicki, M., Torzewicz, T., Ptak, P., Raszkowski, T., Samson, A., & Górecki, K. (2019). Parametric compact thermal models of power LEDs. Energies, 12(9), 1724. https://doi.org/10.3390/en12091724
  • Keeping, S. (2013, April). Defining the color characteristics of white LEDs. Digi-Key Electronics.
  • Ke, H.-L., Hao, J., Tu, J.-H., Miao, P.-X., Wang, C.-Q., Cui, J.-Z., Sun, Q., & Sun, R.-T. (2018, February). Lumen degradation analysis of LED lamps based on the subsystem isolation method. Applied Optics, 57(4), 849–854. https://doi.org/10.1364/AO.57.000849
  • Ke, H.-L., Jing, L., Hao, J., Gao, Q., Wang, Y., Xun Wang, X., Sun, Q., & Xu, Z.-J. (2016, July). Analysis of junction temperature and modification of luminous flux degradation for white LEDs in a thermal accelerated reliability test. Applied Optics, 55(22), 5909. https://doi.org/10.1364/AO.55.005909
  • Keppens, A., Ryckaert, W. R., Deconinck, G., & Hanselaer, P. (2010). Modeling high power light-emitting diode spectra and their variation with junction temperature. Journal of Applied Physics, 108(4), 043104. https://doi.org/10.1063/1.3463411
  • Ke, H. L., Sun, Q., Zhao, J., Zhang, H. X., Jing, L., Wang, Y., and Hao, J. (2016, April 18–20). Junction temperature estimation for LED lamp with forward voltage method. In 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), (pp. 1–4).
  • Lamdan, T. (1976, May). Calculation of ’Elmore’ delay for RC ladder networks. Proceedings of the Institution of Electrical Engineers, 123, 411–412. https://digital-library.theiet.org/content/journals/10.1049/piee.1976.0092
  • Lasance, C. J., & Poppe, A. (2014). Thermal management for LED applications. Springer-Verlag.
  • Lee, D., Choi, H., Jeong, S., Jeon, C. H., Lee, D., Lim, J., Byon, C., & Choi, J. (2018, December). A study on the measurement and prediction of LED junction temperature. International Journal of Heat and Mass Transfer, 127, 1243–1252. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.091
  • Li, S. S. (1993). Semiconductor physical Electronics (1 ed.). Plenum Press.
  • Liang, R., Zhang, J., Wang, S., Chen, Q., Xu, L., Dai, J., & Chen, C. (2017, March). Investigation on thermal characterization of eutectic flip-chip UV-LEDs with different bonding voidage. IEEE Transactions on Electron Devices, 64(3), 1174–1179. https://doi.org/10.1109/TED.2017.2656240
  • Lisitsyn, V. M., Lukash, V. S., Stepanov, S. A., & Yangyang, J. (2016). White LEDs with limit luminous efficacy. AIP Conference Proceedings, 1698(1), 060008.
  • Liu, H. Y., Yang, Y. C., Liu, G. J., & Huang, R. C. (2017, December). Improved light extraction efficiency of gan-based ultraviolet light-emitting diodes by self-assembled mgo nanorod arrays. IEEE Transactions on Electron Devices, 64(12), 5006–5011. https://doi.org/10.1109/TED.2017.2766639
  • Modepalli, K. and Parsa, L. (2014, March 16–20). Single stage dual purpose offline HB-LED driver with power factor correction for illumination and visible light communication. In 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014. (pp. 1388–1393).
  • Modepalli, K., & Parsa, L. (2015, January). Dual-purpose offline led driver for illumination and visible light communication. IEEE Transactions on Industry Applications, 51(1), 406–419. https://doi.org/10.1109/TIA.2014.2330066
  • Murphy, T. W., Jr. (2012). Maximum spectral luminous efficacy of white light. Journal of Applied Physics, 111(10), 104909. https://doi.org/10.1063/1.4721897
  • Narukawa, Y., Ichikawa, M., Sanga, D., Sano, M., & Mukai, T. (2010). White light emitting diodes with super-high luminous efficacy. Journal of Physics D: Applied Physics, 43(35), 354002. https://doi.org/10.1088/0022-3727/43/35/354002
  • Nichia Corporation. (2016). Optical unit and calculation. Application Note.
  • Niculina, B. D., Paul, S., and Ciprian, I. (2016, July 2). Determining the LEDs junction temperature as a function of forward voltage in given operating conditions. In 2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). (pp. 1–4), June 2016. 30 June.
  • Ohno, Y. (2004). Color rendering and luminous efficacy of white led spectra. In Ian T. Ferguson, N. Narendran, Teven P. DenBaars, & John C. Carrano (Eds.), Fourth International Conference on Solid State Lighting (Vol. 5530, pp. 88–98). SPIE. https://doi.org/10.1117/12.565757
  • Petroski, J. (2015, March 15–19). Range and probabilities of LED junction temperature predictions based upon forward voltage population statistics. In 2015 31st Thermal Measurement, Modeling Management Symposium (SEMI-THERM). (pp. 327–331).
  • Pohl, L., Hantos, G., Hegedüs, J., Németh, M., Kohári, Z., & Poppe, A. (2020). Mixed detailed and compact multi-domain modeling to describe cob LEDs. Energies, 13(16), 4051. https://doi.org/10.3390/en13164051
  • Poppe, A. (2012, March 18–22). A step forward in multi-domain modeling of power LEDs. In 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), (pp. 325–330).
  • Poppe, A. (2015). Multi-domain compact modeling of LEDs: An overview of models and experimental data. Microelectronics Journal, 46(12, Part A), 1138–1151. https://doi.org/10.1016/j.mejo.2015.09.013
  • Poppe, A. and Szalai, A. (2014, March 9–13). Practical aspects of implementation of a multi-domain led model. In 2014 Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). (pp. 153–158).
  • Poppe, A., Zhang, Y., Wilson, J., Farkas, G., Szabo, P., Parry, J., Rencz, M., & Szekely, V. (2009, June). Thermal measurement and modeling of multi-die packages. IEEE Transactions on Components and Packaging Technologies, 32(2), 484–492. https://doi.org/10.1109/TCAPT.2008.2004578
  • Rainer, H., & Thomas, Z. (2019). Package-related thermal resistance of LEDs. OSRAM Opto Application Note AN049.
  • Ralston, J. M., & Lorimor, O. G. (1977, July). Degradation of bulk electroluminescent efficiency in zn, O-doped GaP LED’s. IEEE Transactions on Electron Devices, 24(7), 970–972. https://doi.org/10.1109/T-ED.1977.18862
  • Raypah, M. E., Sodipo, B. K., Devarajan, M., & Sulaiman, F. (2016, January). Estimation of optical power and heat-dissipation factor of low-power SMD LED as a function of injection current and ambient temperature. IEEE Transactions on Electron Devices, 63(1), 408–413. https://doi.org/10.1109/TED.2015.2501840
  • Rencz, M., Poppe, A., Kollar, E., Ress, S., & Szekely, V. (2005, March). Increasing the accuracy of structure function based thermal material parameter measurements. IEEE Transactions on Components and Packaging Technologies, 28(1), 51–57. https://doi.org/10.1109/TCAPT.2004.843204
  • Roby, J., & Aubé, M. (2017, December). Lspdd: Lamp spectral power distribution database.
  • Sapatnekar, S. S. (1994, June 06–10). RC interconnect optimization under the Elmore delay model. In 31st Design Automation Conference. (pp. 387–391).
  • Schwiegerling, J. (2004). Field Guide to Visual and Ophthalmic Optics (pp. 12–12). SPIE Press. https://doi.org/10.1117/3.592975
  • Shao, J. (2009, February 15–19). Single stage offline led driver. In 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition. (pp. 582–586).
  • Stout, R. (2007). Linear Superposition Speeds Thermal Modeling. Power Electronics Technology, 28–33.
  • Tao, X., & Hui, S. Y. R. (2012, April). Dynamic photoelectrothermal theory for light-emitting diode systems. IEEE Transactions on Industrial Electronics, 59(4), 1751–1759. https://doi.org/10.1109/TIE.2011.2109341
  • Tetzlaff, T., A B, M. A., and Witkowski, U. (2016, November 28–30). Estimation of LED junction temperature based on forward voltage method for digital hardware implementation. In 2016 European Modelling Symposium (EMS). (pp. 223–228).
  • Trujillo, C., Henao, G., Castro, J., & Narvaez, A. (2017, July). Design and development of a led driver prototype with a single-stage pfc and low current harmonic distortion. IEEE Latin America Transactions, 15(8), 1368–1375. https://doi.org/10.1109/TLA.2017.7994781
  • van Driel, W. D., Yuan, C. A., Koh, S., & Zhang, G. Q. (2011, April 18–20). Led system reliability. In 2011 12th intl. Conf. On thermal, mechanical multi-physics simulation and experiments in microelectronics and microsystems. (pp. /1/5–5/5). Institute of Electrical and Electronics Engineers (IEEE).
  • Wang, J.-C. (2014). Analyzing thermal module developments and trends in high-power LED. International Journal of Photoenergy, 2014, 1–11. https://doi.org/10.1155/2014/149520
  • Williams, E. W., & Hall, R. (1978). Luminescence and the light emitting diode (1 ed.). Pergamon Press.
  • Xi, Y., & Schubert, E. F. (2004). Junction–temperature measurement in gan ultraviolet light-emitting diodes using diode forward voltage method. Applied Physics Letters, 85(12), 2163–2165. https://doi.org/10.1063/1.1795351
  • Yan, C., Bai, S., Nie, T., & Wang, V. (2015, November 2–4). High-power high-efficiency green LEDs. In 2015 12th China international forum on solid state lighting (SSLCHINA). (pp. 1–3). IEEE.
  • Ye, H., Chen, X., van Zeijl, H., Gielen, A. W. J., & Zhang, G. (2013, September). Thermal transient effect and improved junction temperature measurement method in high-voltage light-emitting diodes. IEEE Electron Device Letters, 34(9), 1172–1174. https://doi.org/10.1109/LED.2013.2274473