473
Views
0
CrossRef citations to date
0
Altmetric
ELECTRICAL & ELECTRONIC ENGINEERING

Analysis of probabilistic optimal power flow in the power system with the presence of microgrid correlation coefficients

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2292325 | Received 09 Apr 2023, Accepted 04 Dec 2023, Published online: 12 Dec 2023

References

  • Alayi, R., Zishan, F., Mohkam, M., Hoseinzadeh, S., Memon, S., & Garcia, D. A. (2021). A sustainable energy distribution configuration for microgrids integrated to the national grid using back-to-back converters in a renewable power system. Electronics, 10(15), 1826. https://doi.org/10.3390/electronics10151826
  • Alsafasfeh, Q., Saraereh, O. A., Khan, I., & Kim, S. (2019). Solar PV grid power flow analysis. Sustainability, 11(6), 1744. https://doi.org/10.3390/su11061744
  • Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2017). Fuzzy unscented transform for uncertainty quantification of correlated wind/PV microgrids: Possibilistic–probabilistic power flow based on RBFNNs. IET Renewable Power Generation, 11(6), 867–14. https://doi.org/10.1049/iet-rpg.2016.0669
  • Bahrami, S., Therrien, F., Wong, V. W., & Jatskevich, J. (2016). Semidefinite relaxation of optimal power flow for AC–DC grids. IEEE Transactions on Power Systems, 32(1), 289–304. https://doi.org/10.1109/TPWRS.2016.2543726
  • Binder, K., Heermann, D. W., Binder, K., & Heermann, D. W. (2010). Theoretical foundations of the Monte Carlo method and its applications in statistical physics. In Monte Carlo Simulation in Statistical Physics: An Introduction (pp. 5–67). https://link.springer.com/chapter/10.1007/978-3-030-10758-1_2
  • Böttcher, O. (2012). Energy efficient and sustainable—federal buildings in Germany. REHVA Journal, 49(3), 41–45.
  • Carpinelli, G., Caramia, P., & Varilone, P. (2015). Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems. Renewable Energy, 76, 283–295. https://doi.org/10.1016/j.renene.2014.11.028
  • Chen, P., Chen, Z., & Bak-Jensen, B. (2008, April). Probabilistic load flow: A review. 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (pp. 1586–1591). IEEE.
  • Chen, C., Wu, W., Zhang, B., & Sun, H. (2015). Correlated probabilistic load flow using a point estimate method with nataf transformation. International Journal of Electrical Power & Energy Systems, 65, 325–333. https://doi.org/10.1016/j.ijepes.2014.10.035
  • Che, Y., Wang, X., Lv, X., & Hu, Y. (2020). Probabilistic load flow using improved three point estimate method. International Journal of Electrical Power & Energy Systems, 117, 105618. https://doi.org/10.1016/j.ijepes.2019.105618
  • Constante-Flores, G. E., & Illindala, M. S. (2018). Data-driven probabilistic power flow analysis for a distribution system with renewable energy sources using Monte Carlo simulation. IEEE Transactions on Industry Applications, 55(1), 174–181. https://doi.org/10.1109/TIA.2018.2867332
  • Das, S., & Malakar, T. (2018, December). A probabilistic load flow with uncertain load using point estimate method. 2018 15th IEEE India Council International Conference (INDICON) (pp. 1–5). IEEE.
  • Delgado, C., & Domínguez-Navarro, J. A. (2014). Point estimate method for probabilistic load flow of an unbalanced power distribution system with correlated wind and solar sources. International Journal of Electrical Power & Energy Systems, 61, 267–278. https://doi.org/10.1016/j.ijepes.2014.03.055
  • Fan, M., Vittal, V., Heydt, G. T., & Ayyanar, R. (2012a). Probabilistic power flow analysis with generation dispatch including photovoltaic resources. IEEE Transactions on Power Systems, 28(2), 1797–1805. https://doi.org/10.1109/TPWRS.2012.2219886
  • Fan, M., Vittal, V., Heydt, G. T., & Ayyanar, R. (2012b). Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants. IEEE Transactions on Power Systems, 27(4), 2251–2261. https://doi.org/10.1109/TPWRS.2012.2190533
  • Feng, F., Zhang, P., Zhou, Y., & Wang, L. (2022). Distributed networked microgrids power flow. IEEE Transactions on Power Systems, 38(2), 1405–1419. https://doi.org/10.1109/TPWRS.2022.3175933
  • Gupta, N. (2016). Probabilistic load flow with detailed wind generator models considering correlated wind generation and correlated loads. Renewable Energy, 94, 96–105. https://doi.org/10.1016/j.renene.2016.03.030
  • Gutierrez-Lagos, L., & Ochoa, L. F. (2019). OPF-based CVR operation in PV-rich MV–LV distribution networks. IEEE Transactions on Power Systems, 34(4), 2778–2789. https://doi.org/10.1109/TPWRS.2019.2894795
  • Kamal, M., Alarjani, A., Haq, A., Yusufi, F. N. K., & Ali, I. (2021). Multi-objective transportation problem under type-2 trapezoidal fuzzy numbers with parameters estimation and goodness of fit. Transport, 36(4), 317–338. https://doi.org/10.3846/transport.2021.15649
  • Kapeller, H., Dvorak, D., & Šimić, D. (2021). Improvement and investigation of the requirements for Electric vehicles by the use of HVAC modeling. HighTech and Innovation Journal, 2(1), 67–76. https://doi.org/10.28991/HIJ-2021-02-01-07
  • Lee, J. O., Kim, Y. S., & Jeon, J. H. (2022). Optimal power flow for bipolar DC microgrids. International Journal of Electrical Power & Energy Systems, 142, 108375. https://doi.org/10.1016/j.ijepes.2022.108375
  • Li, X., Cao, J., & Du, D. (2013). Two-point estimate method for probabilistic optimal power flow computation including wind farms with correlated parameters. In Intelligent Computing for Sustainable Energy and Environment: Second International Conference, ICSEE 2012, Shanghai, China, September 12-13, 2012. Revised Selected Papers 2 (pp. 417–423). Springer Berlin Heidelberg.
  • Li, C., Chen, Y. A., Jin, C., Sharma, R., & Kleissl, J. (2022). Online PV smart inverter coordination using deep deterministic policy gradient. Electric Power Systems Research, 209, 107988. https://doi.org/10.1016/j.epsr.2022.107988
  • Mansouri, S., Zishan, F., Montoya, O. D., Azimizadeh, M., & Giral-Ramírez, D. A. (2023). Using an intelligent method for microgrid generation and operation planning while considering load uncertainty. Results in Engineering, 17, 100978. https://doi.org/10.1016/j.rineng.2023.100978
  • Mohammadi, M., Shayegani, A., & Adaminejad, H. (2013). A new approach of point estimate method for probabilistic load flow. International Journal of Electrical Power & Energy Systems, 51, 54–60. https://doi.org/10.1016/j.ijepes.2013.02.019
  • Montoya, O. D., Gil-González, W., & Garces, A. (2019). Sequential quadratic programming models for solving the OPF problem in DC grids. Electric Power Systems Research, 169, 18–23. https://doi.org/10.1016/j.epsr.2018.12.008
  • Montoya, O. D., Zishan, F., & Giral-Ramírez, D. A. (2022). Recursive convex model for optimal power flow solution in monopolar DC networks. Mathematics, 10(19), 3649. https://doi.org/10.3390/math10193649
  • Peng, S., Lin, X., Tang, J., Xie, K., Ponci, F., Monti, A., & Li, W. (2022). Probabilistic power flow of AC/DC hybrid grids with addressing boundary issue of correlated uncertainty sources. IEEE Transactions on Sustainable Energy, 13(3), 1607–1619. https://doi.org/10.1109/TSTE.2022.3167531
  • Ran, X., & Miao, S. (2016). Three‐phase probabilistic load flow for power system with correlated wind, photovoltaic and load. IET Generation, Transmission and Distribution, 10(12), 3093–3101. https://doi.org/10.1049/iet-gtd.2016.0424
  • Sexauer, J. M., & Mohagheghi, S. (2013). Voltage quality assessment in a distribution system with distributed generation—A probabilistic load flow approach. IEEE Transactions on Power Delivery, 28(3), 1652–1662. https://doi.org/10.1109/TPWRD.2013.2259599
  • Shi, L., Wang, C., Yao, L., Ni, Y., & Bazargan, M. (2011). Optimal power flow solution incorporating wind power. IEEE Systems Journal, 6(2), 233–241. https://doi.org/10.1109/JSYST.2011.2162896
  • Singh, S. (2020). Environmental energy harvesting techniques to power standalone IoT-equipped sensor and its application in 5G communication. Emerging Science Journal, 4, 116–126. https://doi.org/10.28991/esj-2021-SP1-08
  • Verbic, G., & Canizares, C. A. (2006). Probabilistic optimal power flow in electricity markets based on a two-point estimate method. IEEE Transactions on Power Systems, 21(4), 1883–1893. https://doi.org/10.1109/TPWRS.2006.881146
  • Xie, Z. Q., Ji, T. Y., Li, M. S., & Wu, Q. H. (2017). Quasi-Monte Carlo based probabilistic optimal power flow considering the correlation of wind speeds using copula function. IEEE Transactions on Power Systems, 33(2), 2239–2247. https://doi.org/10.1109/TPWRS.2017.2737580
  • Ye, K., Zhao, J., Zhang, Y., Liu, X., & Zhang, H. (2022). A generalized computationally efficient copula-polynomial chaos framework for probabilistic power flow considering nonlinear correlations of PV injections. International Journal of Electrical Power & Energy Systems, 136, 107727. https://doi.org/10.1016/j.ijepes.2021.107727
  • Ying, P., Chen, Y. K., Xu, Y. G., & Tian, Y. (2015). Computational and experimental investigations of an omni-flow wind turbine. Applied Energy, 146, 74–83. https://doi.org/10.1016/j.apenergy.2015.01.067
  • Yuan, Y., Zhou, J., Ju, P., & Feuchtwang, J. (2011). Probabilistic load flow computation of a power system containing wind farms using the method of combined cumulants and gram–Charlier expansion. IET Renewable Power Generation, 5(6), 448–454. https://doi.org/10.1049/iet-rpg.2010.0218
  • Yu, H., & Rosehart, B. (2011, August). Probabilistic power flow considering wind speed correlation of wind farms. 17th Power Systems Computation Conference (pp. 1–7).
  • Zadeh, L. (1965). Fuzzy sets. Information & Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  • Zhou, S., Xiao, Q., & Wu, L. (2020). Probabilistic power flow analysis with correlated wind speeds. Renewable Energy, 145, 2169–2177. https://doi.org/10.1016/j.renene.2019.07.153
  • Zishan, F., Mansouri, S., Abdollahpour, F., Grisales-Noreña, L. F., & Montoya, O. D. (2023). Allocation of renewable energy resources in distribution systems while considering the uncertainty of wind and solar resources via the Multi-objective salp swarm algorithm. Energies, 16(1), 474. https://doi.org/10.3390/en16010474