1,590
Views
0
CrossRef citations to date
0
Altmetric
MECHANICAL ENGINEERING

NREL Phase VI wind turbine blade tip with S809 airfoil profile winglet design and performance analysis using computational fluid dynamics

, ORCID Icon & ORCID Icon
Article: 2293562 | Received 21 Jul 2023, Accepted 06 Dec 2023, Published online: 18 Dec 2023

References

  • Abdulkadir, A., Chowdhury, H., Bavin, L., & Firoz, A. (2015). An aerodynamic study of a domestic scale horizontal axis wind turbine with varied tip configurations. Procedia Engineering, 105, 757–21. https://doi.org/10.1016/j.proeng.2015.05.067
  • Al-Abadi, A., Kim, Y., Ertunc, Ö., Epple, P., & Delgado, A. (2018). Interaction between free-stream turbulence and tip-vortices of wind turbine blades with and without winglets. Journal of Physics Conference Series, 1037(7), 072025. https://doi.org/10.1088/1742-6596/1037/7/072025
  • Elfarra, M. A., Sezer Uzol, N., & Sinan Akmandor, İ. (2015). Investigations on blade tip tilting for hawt rotor blades using CFD. International Journal of Green Energy, 12(2), 125–138. https://doi.org/10.1080/15435075.2014.889007
  • Farhan, A., Hassanpour, A., Burns, A., & Motlagh, Y. G. (2018). Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance. Renewable Energy, 131, 1255–1273. https://doi.org/10.1016/j.renene.2018.08.017
  • Gaunaa, M., & Johansen, J. (2007). Determination of the maximum aerodynamic efficiency of wind turbine rotors with winglets. Journal of Physics Conference Series, 75, 012006. https://doi.org/10.1088/1742-6596/75/1/012006
  • Gertz, D., Johnson, D. A., & Swytink-Binnema, N. (2012). An evaluation testbed for wind turbine blade tip designs — winglet results. Wind Engineering, 36(4), 389–410. https://doi.org/10.1260/0309-524X.36.4.389
  • Guerrero, J., Sanguineti, M., & Wittkowski, K. (2018). CFD study of the impact of variable cant angle winglets on total drag reduction. Aerospace, 5(4), 126. https://doi.org/10.3390/aerospace5040126
  • Gupta, A., & Amano, R. S. (2012). CFD analysis of wind turbine blade with winglets, Proceedings of the ASME. https://doi.org/10.1115/DETC2012-70679
  • Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S., & Larwood, S. (2001). Unsteady aerodynamics experiment Phase VI: Wind tunnel test configurations and available data campaigns. NREL/TP, 500–29955. https://doi.org/10.2172/15000240
  • Khalafallah, M. G., Ahmed, A. M., & Emam, M. K. (2019). The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine. Recent trends in fluid dynamics. Advances in Mechanical Engineering, 11(9), 168781401987831. https://doi.org/10.1177/1687814019878312
  • Lawson, M. J., Li, Y., & Sale, D. C. (2011). Development and verification of a computational fluid dynamics model of a horizontal-axis tidal current turbine. National Renewable Energy Laboratory. https://doi.org/10.1115/OMAE2011-49863
  • Lawton, S., & Crawford, C. (2014). Investigation and optimization of blade tip winglets using an implicit free wake vortex method. Journal of Physics Conference Series, 524, 012033. https://doi.org/10.1088/1742-6596/524/1/012033
  • Madsen,M. H. A., Zahle, F., Horcas, S. G., Barlas, T. K., & Sørensen, N. N. (2022). CFD-based curved tip shape design for wind turbine blades. Wind Energy Science, 7(4), 1471–1501. https://doi.org/10.5194/wes-7-1471-2022
  • Marten, D. (2016). QBlade v0.95, guidelines for lifting line free vortex wake simulations. https://doi.org/10.13140/RG.2.1.1663.1929
  • Maughmer, M. D. (2003). Design of winglets for high-performance sailplanes. Journal of Aircraft, 40(6), 1099–1106. https://doi.org/10.2514/2.7220
  • Miguel Sumait, S., Binoe Eugenio, A., & Louis, A. M. D. (2020). Aerodynamic Investigation of a Horizontal Axis Wind Turbine with Split Winglet Using Computational Fluid Dynamics. Energies, 13(18), 4983. https://doi.org/10.3390/en13184983
  • Mohammed, K., Ibrahim, M. M., Abdel Hamed, H. E., & Ahmed, F. (2019). AbdelGwad: Investigation of a small horizontal axis wind turbine performance with and without winglet. Energy, 187, 115921. https://doi.org/10.1016/j.energy.2019.115921
  • Monier, A., Elfarra, N. S.-U., & Akmandor, I. S. (2014). NREL VI rotor blade: Numerical investigation and winglet design and optimization using CFD. Wind Energy, 17(4), 605–626. https://doi.org/10.1002/we.1593
  • Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method in computational fluid dynamics, an advanced Introduction with OpenFOAM and Matlab. Springer. https://doi.org/10.1007/978-3-319-16874-6
  • Popescu, F., Mahu, R., Rusu, E., & Ion, I. V. A. (2022). Robust and efficient computational fluid dynamics approach for the prediction of horizontal-axis wind turbine performance. Journal of Marine Science and Engineering, 10(9), 1243. https://doi.org/10.3390/jmse10091243
  • Reddy, S. R., Dulikravich, G. S., Sobieczky, H., & Gonzalez, M. (2019). Bladelets—winglets on blades of wind turbines: A multiobjective design optimization study. Journal of Solar Energy Engineering, 141(6), 061003. https://doi.org/10.1115/1.4043657
  • Schaffarczyk, A. P. (2014). Introduction to wind turbine aerodynamics. Green energy and technology. Berlin Heidelberg: Springer-Verlog. https://doi.org/10.1007/978-3-030-41028-5
  • Shalini, V., Akshoy Ranjan, P., Anuj, J., & Firoz, A. (2021). Numerical investigation of stall characteristics for winglet blade of a horizontal axis wind turbine. E3S Web of Conferences, 321, 03004. https://doi.org/10.1051/e3sconf/202132103004
  • Tu, J., Yeoh, G. H., & Chaoqun, L. (2013). Computational fluid dynamics: A practical approach (2nd ed.). Elsevier. https://doi.org/10.1016/C2015-0-06135-4
  • Zhang, Z., Limin, K., Zhaolong, H., Dai, Z., Yongsheng, Z., Yan, B., Lei, D., Jiahuang, T., Yaoran, C., & Mingsheng, C. (2023). Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines. Energy, 281, 128252. https://doi.org/10.1016/j.energy.2023.128252