528
Views
0
CrossRef citations to date
0
Altmetric
Computer Science

Deep learning-based automated spine fracture type identification with Clinically validated GAN generated CT images

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2295645 | Received 03 Aug 2023, Accepted 11 Dec 2023, Published online: 16 Jan 2024

References

  • Aamir, M., Rahman, Z., Dayo, Z. A., Abro, W. A., Uddin, M. I., Khan, I., Imran, A. S., Ali, Z., Ishfaq, M., Guan, Y., & Hu, Z. (2022). A deep learning approach for brain tumor classification using MRI images. Computers and Electrical Engineering, 101, 108105. https://doi.org/10.1016/j.compeleceng.2022.108105
  • Amina, B., Nadjia, B., & Azeddine, B. (2021). Gastrointestinal image classification based on vgg16 and transfer learning. In Mohamed Ridda Laouar (Ed.), 2021 International Conference on Information Systems and Advanced Technologies, (ICISAT) (pp. 1–5). IEEE.
  • Apostolopoulos, I. D., & Mpesiana, T. A. (2020). Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine, 43, 635–640. https://doi.org/10.1007/s13246-020-00865-4
  • Cheng, C.-T., Ho, T. Y., Lee, T. Y., Chang, C. C., Chou, C. C., Chen, C. C., Chung, I., & Liao, C. H. (2019). Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. European Radiology, 29(10), 5469–5477. https://doi.org/10.1007/s00330-019-06167-y
  • Choudhary, P., & Hazra, A. (2019). Chest disease radiography in twofold: Using convolutional neural networks and transfer learning. Evolving Systems. https://www.researcher-app.com/paper/3982729
  • Chuquicusma, M. J. M., Hussein, S., Burt, J., & Bagci, U. (2017). How to fool radiologists with generative adversarial networks: A visual turing test for lung cancer diagnosis. In Proceedings of 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 240–244). IEEE.
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46. https://doi.org/10.1177/001316446002000104
  • Divi, S. N., Schroeder, G. D., Oner, F. C., Kandziora, F., Schnake, K. J., Dvorak, M. F., Benneker, L. M., Chapman, J. R., & Vaccaro, A. R. (2019). AOSpine—Spine trauma classification system: The value of modifiers: A narrative review with commentary on evolving descriptive principles. Global Spine Journal, 9(1), 77S–88S. https://doi.org/10.1177/2192568219827260
  • Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). Synthetic data augmentation using GAN for improved liver lesion classification. https://ieeexplore.ieee.org/abstract/document/8363576
  • Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification, Neurocomputing, 321, 321–331. https://doi.org/10.1016/j.neucom.2018.09.013
  • Ghassemi, N., Shoeibi, A., & Rouhani, M. (2020). Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR Images. Biomedical Signal Processing and Control, 57, 101678. https://doi.org/10.1016/j.bspc.2019.101678
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144. https://doi.org/10.1145/3422622
  • Gupta, D., & Pal, B. (2022). Vulnerability analysis and robust training with additive noise for FGSM attack on transfer learning-based brain tumor detection from MRI. In Mohammad Shamsul Arefin, M. Shamim Kaiser, Anirban Bandyopadhyay, Md. Atiqur Rahman Ahad, Kanad Ray (Eds.), Proceedings of the International Conference on Big Data, IoT, and Machine Learning (pp. 103–114). Singapore: Springer.
  • Hamamoto Suvarna, R., Yamada, M., Kobayashi, K., Shinkai, N., Miyake, M., Takahashi, M., Jinnai, S., Shimoyama, R., Sakai, A., Takasawa, K., Bolatkan A., Shozu, K., Dozen, A., Machino, H., Takahashi, S., Asada, K., Komatsu, M., Sese, J., & Kaneko, S. (2020). Application of artificial intelligence technology in oncology: Towards the establishment of precision medicine. Cancers, 12(12), 3532. https://doi.org/10.3390/cancers12123532
  • Han, C., Hayashi, H., Rundo, L., Araki, R., Shimoda, W., Muramatsu, S., Furukawa, Y., Mauri, G., & Nakayama, H. (2018). GAN-based synthetic brain MR image generation. In IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 734–738). IEEE. https://kyushu-u.pure.elsevier.com/en/publications/gan-basedsynthetic-brain-MR-image-generation
  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv.org. https://arxiv.org/abs/1512.03385v1
  • Javaid, U., & Lee, J. A. (2016). Capturing variabilities from computed tomography images with generative adversarial networks. arXiv:1805.11504 [cs, stat]. https://arxiv.org/abs/1805.11504
  • Jiang, Z.-P., Liu, Y.-Y., Shao, Z.-E., & Huang, K.-W. (2021). An improved VGG16 model for pneumonia image classification. Applied Sciences, 11(23), 11185. https://doi.org/10.3390/app112311185
  • Kumar, S., Choudhary, S., Jain, A., Singh, K., Ahmadian, A., & Bajuri, M. Y. (2023). Brain tumor classification using deep neural network and transfer learning. Brain Topography, 36(3), 1–14. https://doi.org/10.1007/s10548-023-00953-0
  • Liu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui, P., Kanada, K., de Oliveira Marinho, G., Gallegos, J., Gabriele, S., Gupta, V., Singh, N., Natarajan, V., Hofmann-Wellenhof, R. S., Corrado, G. H., Peng, L. R., Webster, D., Ai, D. J., Huang, S., Liu, Y., Dunn, R., & Coz, D. (2020). A deep learning system for differential diagnosis of skin diseases. Nature Medicine, 26(6), 900–908. https://doi.org/10.1038/s41591-020-0842-3
  • L. Statistics, Statistical tutorials and software guides. (2015). https://statistics.laerd.com/
  • Nazir, T., Irtaza, A., Javed, A., Malik, H., Hussain, D., & Naqvi, R. A. (2020). Retinal image analysis for diabetes-based eye disease detection using deep learning. Applied Sciences, 10(18), 6185. https://doi.org/10.3390/app10186185
  • Phung, V. H., & Rhee, E. J. (2019). A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets. Applied Sciences, 9, 4500. https://doi.org/10.3390/app9214500
  • Poedjiastoeti, W., & Suebnukarn, S. (2018). Application of convolutional neural network in the diagnosis of jaw tumors. Healthcare Informatics Research, 24(3), 236. https://doi.org/10.4258/hir.2018.24.3.236
  • Qin, X.-H, Wang, Z. Y., Yao, J. P., Zhou, Q., Zhao, P. F., Wang, Z. Y., & Huang, L. (2020). Using a one-dimensional convolutional neural network with a conditional generative adversarial network to classify plant electrical signals. Computers and Electronics in Agriculture, 174, 105464. https://doi.org/10.1016/j.compag.2020.105464
  • Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv.org. https://arxiv.org/abs/1511.06434
  • Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. (2019). Transfusion: Understanding transfer learning for medical imaging. arXiv:1902.07208 [cs, stat]. https://arxiv.org/abs/1902.0720
  • Reddy, A. S. B., & Juliet, D. S. (2019). Transfer learning with ResNet-50 for malaria cell-image classification. https://ieeexplore.ieee.org/abstract/document/8697909
  • Saber, A., Sakr, M., Abo-Seida, O. M., Keshk, A., & Chen, H. (2021). A novel deep-learning model for automatic detection and classification of breast cancer using the transfer-learning technique. IEEE Access, 9, 71194–71209. https://doi.org/10.1109/access.2021.3079204
  • Saeed, A. Q., Sheikh Abdullah, S. N. H., Che-Hamzah, J., & Abdul Ghani, A. T. (2021). Accuracy of using generative adversarial networks for glaucoma detection: Systematic review and bibliometric analysis. Journal of Medical Internet Research, 23(9), e27414. https://doi.org/10.2196/27414
  • Salehinejad, H., Colak, E., Dowdell, T., Barfett, J., & Valaee, S. (2019). Synthesizing chest X-ray pathology for training deep convolutional neural networks. IEEE Transactions on Medical Imaging, 38(5), 1197–1206. https://doi.org/10.1109/tmi.2018.2881415
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv.org. https://arxiv.org/abs/1409.1556
  • Sreedhara, V. S. M., & Mocko, G. (2015). Control of thermoforming process parameters to increase quality of surfaces using pin-based tooling. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 57113), (p. V004T05A016). American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2015-47682
  • Urakawa, T., Tanaka, Y., Goto, S., Matsuzawa, H., Watanabe, K., & Endo, N. (2018). Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiology, 48(2), 239–244. https://doi.org/10.1007/s00256-018-3016-3
  • Valieris, R., Amaro, L., Osório, C. A. B. D. T., Bueno, A. P., Rosales Mitrowsky, R. A., Carraro, D. M., Nunes, D. N., Dias-Neto, E., & Silva, I. T. D. (2020). Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer. Cancers, 12(12), 3687. https://doi.org/10.3390/cancers12123687
  • Vanbelle, S., & Albert, A. (2009). A note on the linearly weighted kappa coefficient for ordinal scales. Statistical Methodology, 6(2), 157–163. https://doi.org/10.1016/j.stamet.2008.06.001
  • Yi, X., Walia, E., & Babyn, P. (2019). Generative adversarial network in medical imaging: A review. Medical Image Analysis, 58, 101552. https://doi.org/10.1016/j.media.2019.101552
  • Zhang, C., Lei, T., & Chen, P. (2022). Diabetic retinopathy grading by a source free transfer learning approach. Biomedical Signal Processing and Control, 73, 103423. https://doi.org/10.1016/j.bspc.2021.103423
  • Zhao, D., Zhu, D., Lu, J., Luo, Y., & Zhang, G. (2018). Synthetic medical images using F and BGAN for improved lung nodules classification by multi-scale VGG16. Symmetry, 10(10), 519. https://doi.org/10.3390/sym10100519
  • Zhou, Z., Zhai, X., & Tin, C. (2021). Fully automatic electrocardiogram classification system based on generative adversarial network with auxiliary classifier. Expert Systems with Applications, 174, 114809. https://doi.org/10.1016/j.eswa.2021.114809