258
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Heat of hydration, water sorption and microstructural characteristics of paste and mortar mixtures produced with powder waste glass

ORCID Icon, , , , &
Article: 2297466 | Received 06 May 2023, Accepted 09 Nov 2023, Published online: 16 Jan 2024

References

  • Al Saffar, D. M., Tawfik, T. A., & Tayeh, B. A. (2022). Stability of glassy concrete under elevated temperatures. European Journal of Environmental and Civil Engineering, 26(8), 3157–3168. https://doi.org/10.1080/19648189.2020.1783368
  • Alzeer, M. I., Nguyen, H., Fabritius, T., Sreenivasan, H., Telkki, V.-V., Kantola, A. M., Cheeseman, C., Illikainen, M., & Kinnunen, P. (2022). On the hydration of synthetic aluminosilicate glass as a sole cement precursor. Cement and Concrete Research, 159, 106859. https://doi.org/10.1016/j.cemconres.2022.106859
  • Amrina, E., & Vilsi, A. L. (2015). Key performance indicators for sustainable manufacturing evaluation in cement industry. Procedia CIRP, 26, 19–23. https://doi.org/10.1016/j.procir.2014.07.173
  • Bellantuono, G. (2019). Legal pathways of decarbonisation in the EU: The case of coal phase-out. Oil, Gas and Energy Law Intelligence, 17(3), 1–23.
  • Bignozzi, M., Saccani, A., Barbieri, L., & Lancellotti, I. (2015). Glass waste as supplementary cementing materials: The effects of glass chemical composition. Cement and Concrete Composites, 55, 45–52. https://doi.org/10.1016/j.cemconcomp.2014.07.020
  • Bueno, E. T., Paris, J. M., Clavier, K. A., Spreadbury, C., Ferraro, C. C., & Townsend, T. G. (2020). A review of ground waste glass as a supplementary cementitious material: A focus on alkali-silica reaction. Journal of Cleaner Production, 257, 120180. https://doi.org/10.1016/j.jclepro.2020.120180
  • Cai, Y., Xuan, D., & Poon, C. S. (2019). Effects of nano-SiO2 and glass powder on mitigating alkali-silica reaction of cement glass mortars. Construction and Building Materials, 201, 295–302. https://doi.org/10.1016/j.conbuildmat.2018.12.186
  • Carsana, M., Frassoni, M., & Bertolini, L. (2014). Comparison of ground waste glass with other supplementary cementitious materials. Cement and Concrete Composites, 45, 39–45. https://doi.org/10.1016/j.cemconcomp.2013.09.005
  • Chang, X., Yang, X., Zhou, W., Xie, G., & Liu, S. (2015). Influence of glass powder on hydration kinetics of composite cementitious materials. Advances in Materials Science and Engineering, 2015, 1–7. https://doi.org/10.1155/2015/713415
  • Duan, W., Zhuge, Y., Pham, P. N., Liu, Y., & Kitipornchai, S. (2022). A ternary blended binder incorporating alum sludge to efficiently resist alkali-silica reaction of recycled glass aggregates. Journal of Cleaner Production, 349, 131415. https://doi.org/10.1016/j.jclepro.2022.131415
  • Duan, W., Zhuge, Y., Pham, P. N., W. K. Chow, C., Keegan, A., & Liu, Y. (2020). Utilization of drinking water treatment sludge as cement replacement to mitigate alkali–silica reaction in cement composites. Journal of Composites Science, 4(4), 171. https://www.mdpi.com/2504-477X/4/4/171 https://doi.org/10.3390/jcs4040171
  • Elaqra, H. A., Abou Haloub, M. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, 203, 75–82. https://doi.org/10.1016/j.conbuildmat.2019.01.077
  • Environmental Protection Agency, USA. (2010). Available and emerging technologies for reducing greenhouse gas emissions from the Portland cement industry. US EPA-Office of Air and Radiation. https://www.epa.gov/stationary-sources-air-pollution/available-and-emerging-technologies-reducing-greenhouse-gas
  • Fanijo, E. O., Kassem, E., & Ibrahim, A. (2021). ASR mitigation using binary and ternary blends with waste glass powder. Construction and Building Materials, 280, 122425. https://doi.org/10.1016/j.conbuildmat.2021.122425
  • Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257, 119579. https://doi.org/10.1016/j.conbuildmat.2020.119579
  • Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, e01149. https://doi.org/10.1016/j.cscm.2022.e01149
  • He, Z.-H., Zhan, P.-M., Du, S.-G., Liu, B.-J., & Yuan, W.-B. (2019). Creep behavior of concrete containing glass powder. Composites Part B: Engineering, 166, 13–20. https://doi.org/10.1016/j.compositesb.2018.11.133
  • Hendi, A., Mostofinejad, D., Sedaghatdoost, A., Zohrabi, M., Naeimi, N., & Tavakolinia, A. (2019). Mix design of the green self-consolidating concrete: Incorporating the waste glass powder. Construction and Building Materials, 199, 369–384. https://doi.org/10.1016/j.conbuildmat.2018.12.020
  • Islam, G. M. S., Rahman, M. H., & Kazi, N. (2017). Waste glass powder as partial replacement of cement for sustainable concrete practice. International Journal of Sustainable Built Environment, 6(1), 37–44. https://doi.org/10.1016/j.ijsbe.2016.10.005
  • Jiang, X., Xiao, R., Bai, Y., Huang, B., & Ma, Y. (2022). Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. Journal of Cleaner Production, 340, 130778. https://doi.org/10.1016/j.jclepro.2022.130778
  • Kamali, M., & Ghahremaninezhad, A. (2016). An investigation into the hydration and microstructure of cement pastes modified with glass powders. Construction and Building Materials, 112, 915–924. https://doi.org/10.1016/j.conbuildmat.2016.02.085
  • Ke, G., Li, W., Li, R., Li, Y., & Wang, G. (2018). Mitigation effect of waste glass powders on alkali–silica reaction (ASR) expansion in cementitious composite. International Journal of Concrete Structures and Materials, 12(1), 1–14. https://doi.org/10.1186/s40069-018-0299-7
  • Khan, M. N. N., Saha, A. K., & Sarker, P. K. (2021). Evaluation of the ASR of waste glass fine aggregate in alkali activated concrete by concrete prism tests. Construction and Building Materials, 266, 121121. https://doi.org/10.1016/j.conbuildmat.2020.121121
  • Khmiri, A., Chaabouni, M., & Samet, B. (2013). Chemical behaviour of ground waste glass when used as partial cement replacement in mortars. Construction and Building Materials, 44, 74–80. https://doi.org/10.1016/j.conbuildmat.2013.02.040
  • Le Billon, P., & Kristoffersen, B. (2020). Just cuts for fossil fuels? Supply-side carbon constraints and energy transition. Environment and Planning A: Economy and Space, 52(6), 1072–1092. https://doi.org/10.1177/0308518X18816702
  • Letelier, V., Henríquez-Jara, B. I., Manosalva, M., & Moriconi, G. (2019). Combined use of waste concrete and glass as a replacement for mortar raw materials. Waste Management, 94, 107–119. https://doi.org/10.1016/j.wasman.2019.05.041
  • Li, Q., Qiao, H., Li, A., & Li, G. (2022). Performance of waste glass powder as a pozzolanic material in blended cement mortar. Construction and Building Materials, 324, 126531. https://doi.org/10.1016/j.conbuildmat.2022.126531
  • Li, Z., Gao, X., Lu, D., & Dong, J. (2022). Early hydration properties and reaction kinetics of multi-composite cement pastes with supplementary cementitious materials (SCMs). Thermochimica Acta, 709, 179157. https://doi.org/10.1016/j.tca.2022.179157
  • Li, Z., Lu, D., & Gao, X. (2020). Analysis of correlation between hydration heat release and compressive strength for blended cement pastes. Construction and Building Materials, 260, 120436. https://doi.org/10.1016/j.conbuildmat.2020.120436
  • Liu, G., Florea, M. V. A., & Brouwers, H. J. H. (2019). Performance evaluation of sustainable high strength mortars incorporating high volume waste glass as binder. Construction and Building Materials, 202, 574–588. https://doi.org/10.1016/j.conbuildmat.2018.12.110
  • Lu, J.-X., & Poon, C. S. (2019). Recycling of waste glass in construction materials. In New trends in eco-efficient and recycled concrete (pp. 153–167). Elsevier.
  • Lu, J.-X., Shen, P., Zhang, Y., Zheng, H., Sun, Y., & Poon, C. S. (2021). Early-age and microstructural properties of glass powder blended cement paste: Improvement by seawater. Cement and Concrete Composites, 122, 104165. https://doi.org/10.1016/j.cemconcomp.2021.104165
  • Lu, J.-X., Zheng, H., Yang, S., He, P., & Poon, C. S. (2019). Co-utilization of waste glass cullet and glass powder in precast concrete products. Construction and Building Materials, 223, 210–220. https://doi.org/10.1016/j.conbuildmat.2019.06.231
  • Mehta, P. K. M., & Paulo, J. M. (2014). Concrete: Microstructure, properties, and materials (4th ed.). McGraw Hill Education.
  • Miller, S. A., John, V. M., Pacca, S. A., & Horvath, A. (2018). Carbon dioxide reduction potential in the global cement industry by 2050. Cement and Concrete Research, 114, 115–124. https://doi.org/10.1016/j.cemconres.2017.08.026
  • Mindess, S., Young, J. F., & Darwin, D. (2002). Concrete (2nd ed.). Pearson Education, Inc.
  • Mirzahosseini, M., & Riding, K. A. (2014). Effect of curing temperature and glass type on the pozzolanic reactivity of glass powder. Cement and Concrete Research, 58, 103–111. https://doi.org/10.1016/j.cemconres.2014.01.015
  • Mohajerani, A., Vajna, J., Cheung, T. H. H., Kurmus, H., Arulrajah, A., & Horpibulsuk, S. (2017). Practical recycling applications of crushed waste glass in construction materials: A review. Construction and Building Materials, 156, 443–467. https://doi.org/10.1016/j.conbuildmat.2017.09.005
  • Nahi, S., Leklou, N., Khelidj, A., Oudjit, M. N., & Zenati, A. (2020). Properties of cement pastes and mortars containing recycled green glass powder. Construction and Building Materials, 262, 120875. https://doi.org/10.1016/j.conbuildmat.2020.120875
  • Nassar, R.-U.-D., & Soroushian, P. (2011). Field investigation of concrete incorporating milled waste glass. The Journal of Solid Waste Technology and Management, 37(4), 307–319. https://doi.org/10.5276/JSWTM.2011.307
  • Nassar, R.-U.-D., & Soroushian, P. (2012). Green and durable mortar produced with milled waste glass. Magazine of Concrete Research, 64(7), 605–615. https://doi.org/10.1680/macr.11.00082
  • Neithalath, N., Persun, J., & Hossain, A. (2009). Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cement and Concrete Research, 39(6), 473–481. https://doi.org/10.1016/j.cemconres.2009.03.006
  • Neville, A. (2006). Concrete: Neville’s insights and issues. Thomas Telford Ltd.
  • Osman, D. A. M., Nur, O., & Mustafa, M. A. (2020). Reduction of energy consumption in cement industry using zinc oxide nanoparticles. Journal of Materials in Civil Engineering, 32(6), 04020124. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003196
  • Patel, D., Tiwari, R., Shrivastava, R., & Yadav, R. (2019). Effective utilization of waste glass powder as the substitution of cement in making paste and mortar. Construction and Building Materials, 199, 406–415. https://doi.org/10.1016/j.conbuildmat.2018.12.017
  • Rahman Sobuz, M. H., Meraz, M. M., Safayet, M. A., Mim, N. J., Mehedi, M. T., Noroozinejad Farsangi, E., Shrestha, R. K., Kader Arafin, S. A., Bibi, T., Hussain, M. S., Bhattacharya, B., Aftab, M. R., Paul, S. K., Paul, P., & Meraz, M. M. (2023). Performance evaluation of high-performance self-compacting concrete with waste glass aggregate and metakaolin. Journal of Building Engineering, 67, 105976. https://doi.org/10.1016/j.jobe.2023.105976
  • Rajabipour, F., Maraghechi, H., & Fischer, G. (2010). Investigating the alkali-silica reaction of recycled glass aggregates in concrete materials. Journal of Materials in Civil Engineering, 22(12), 1201–1208. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000126
  • Ramadan, M., El-Gamal, S. M. A., & Selim, F. A. (2020). Mechanical properties, radiation mitigation and fire resistance of OPC-recycled glass powder composites containing nanoparticles. Construction and Building Materials, 251, 118703. https://doi.org/10.1016/j.conbuildmat.2020.118703
  • Schwarz, N., DuBois, M., & Neithalath, N. (2007). Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes. Cement and Concrete Research, 29(9), 656–666. https://doi.org/10.1016/j.cemconcomp.2007.05.005
  • Schwarz, N., & Neithalath, N. (2008). Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration. Cement and Concrete Research, 38(4), 429–436. https://doi.org/10.1016/j.cemconres.2007.12.001
  • Shayan, A., & Xu, A. (2004). Value-added utilisation of waste glass in concrete. Cement and Concrete Research, 34(1), 81–89. https://doi.org/10.1016/S0008-8846(03)00251-5
  • Shi, C., Wu, Y., Riefler, C., & Wang, H. (2005). Characteristics and pozzolanic reactivity of glass powders. Cement and Concrete Research, 35(5), 987–993. https://doi.org/10.1016/j.cemconres.2004.05.015
  • Nassar, R.-U.-D., & Soroushian, P. (2012). Strength and durability of recycled aggregate concrete containing milled glass as partial replacement for cement. Construction and Building Materials, 29, 368–377. https://doi.org/10.1016/j.conbuildmat.2011.10.061
  • Taher, S. M. S., Saadullah, S. T., Haido, J. H., & Tayeh, B. A. (2021). Behavior of geopolymer concrete deep beams containing waste aggregate of glass and limestone as a partial replacement of natural sand. Case Studies in Construction Materials, 15, e00744. https://doi.org/10.1016/j.cscm.2021.e00744
  • Tahwia, A. M., Abd Ellatief, M., Heneigel, A. M., & Abd Elrahman, M. (2022). Characteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceramics International, 48(14), 19662–19674. https://doi.org/10.1016/j.ceramint.2022.03.103
  • Tahwia, A. M., Essam, A., Tayeh, B. A., & Elrahman, M. A. (2022). Enhancing sustainability of ultra-high performance concrete utilizing high-volume waste glass powder. Case Studies in Construction Materials, 17, e01648. https://doi.org/10.1016/j.cscm.2022.e01648
  • Tahwia, A. M., Heniegal, A. M., Abdellatief, M., Tayeh, B. A., & Elrahman, M. A. (2022). Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Studies in Construction Materials, 17, e01393. https://doi.org/10.1016/j.cscm.2022.e01393
  • Tayeh, B. A., Al Saffar, D. M., Aadi, A. S., & Almeshal, I. (2020). Sulphate resistance of cement mortar contains glass powder. Journal of King Saud University - Engineering Sciences, 32(8), 495–500. https://doi.org/10.1016/j.jksues.2019.07.002
  • Taylor, H. F. W. Cement chemistry.
  • Taylor, H. F. W. (1997). Cement chemistry (2nd ed.). Thomas Telford Publishing.
  • Usón, A. A., López-Sabirón, A. M., Ferreira, G., & Sastresa, E. L. (2013). Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renewable and Sustainable Energy Reviews, 23, 242–260. https://doi.org/10.1016/j.rser.2013.02.024
  • Vaitkevičius, V., Šerelis, E., & Hilbig, H. (2014). The effect of glass powder on the microstructure of ultra high performance concrete. Construction and Building Materials, 68, 102–109. https://doi.org/10.1016/j.conbuildmat.2014.05.101
  • Yang, S., Cui, H., & Poon, C. S. (2018). Assessment of in-situ alkali-silica reaction (ASR) development of glass aggregate concrete prepared with dry-mix and conventional wet-mix methods by X-ray computed micro-tomography. Cement and Concrete Composites, 90, 266–276. https://doi.org/10.1016/j.cemconcomp.2018.03.027
  • Zheng, K. (2016). Pozzolanic reaction of glass powder and its role in controlling alkali–silica reaction. Cement and Concrete Composites, 67, 30–38. https://doi.org/10.1016/j.cemconcomp.2015.12.008