409
Views
0
CrossRef citations to date
0
Altmetric
Materials Engineering

Numerical and experimental investigation of the mechanical properties of MWCNT/RHA reinforced AlP0507-based hybrid aluminum metal matrix composites

, , & ORCID Icon
Article: 2297470 | Received 24 Aug 2023, Accepted 14 Dec 2023, Published online: 16 Jan 2024

References

  • Amirmaleki, M., Samei, J., Green, D. E., van Riemsdijk, I., & Stewart, L. (2016). 3D micromechanical modeling of dual phase steels using the representative volume element method. Mechanics of Materials, 101, 27–39. https://doi.org/10.1016/j.mechmat.2016.07.011
  • Ashebir, D. A., Mengesha, G. A., & Sinha, D. K. (2022). An insight into mechanical and metallurgical behavior of hybrid reinforced aluminum metal matrix composite. Advances in Materials Science and Engineering, 2022, 1–31. https://doi.org/10.1155/2022/7843981
  • Bhandare, R. G., & Sonawane, P. M. (2013). Preparation of aluminum matrix composite by using the stir casting method. International Journal of Engineering and Advanced Technology (IJEAT), 3(3), 61–65.
  • Devaraju, A., & Pazhanivel, K. (2016). Evaluation of microstructure, mechanical and wear properties of aluminum reinforced with boron carbide nanocomposite. Indian Journal of Science and Technology, 9(20), 1–6. https://doi.org/10.17485/ijst/2016/v9i20/84294
  • Esmaily, M., Mortazavi, N., Svensson, J. E., Halvarsson, M., Wessén, M., Johansson, L. G., & Jarfors, A. E. W. (2016). A new semi-solid casting technique for fabricating SiC-reinforced Mg alloy matrix composites. Composites Part B: Engineering, 94, 176–189. https://doi.org/10.1016/j.compositesb.2016.02.019
  • Fereshteh-Saniee, N., Reynolds, N., Norman, D., Qian, C., Armstrong, D. J., Smith, P., Kupke, R., Williams, M. A., & Kendall, K. (2022). Quality analysis of weld-line defects in carbon fibre reinforced sheet moulding compounds by automated eddy current scanning. Journal of Manufacturing and Materials Processing, 6(6), 151. https://doi.org/10.3390/jmmp6060151
  • Hadad, M., Babazade, A., & Safarabadi, M. (2020). Investigation and comparison of the effect of graphene nanoplates and carbon nanotubes on the improvement of mechanical properties in the stir casting process of aluminum matrix nanocomposites. The International Journal of Advanced Manufacturing Technology, 109(9-12), 2535–2547. https://doi.org/10.1007/s00170-020-05838-1
  • Imran, M., Khan, A. A., Megeri, S., & Sadik, S. (2016). Study of hardness and tensile strength of Aluminium-7075 percentage varying reinforced with graphite and bagasse-ash composites. Resource-Efficient Technologies, 2(2), 81–88. https://doi.org/10.1016/j.reffit.2016.06.007
  • James, S. J., Venkatesan, K., Kuppan, P., & Ramanujam, R. (2014). Hybrid aluminum metal matrix composite reinforced with SiC and TiB2. Procedia Engineering, 97, 1018–1026. https://doi.org/10.1016/j.proeng.2014.12.379
  • Kumar, M., & Shankar, U. (2012). Evaluation of mechanical properties of aluminum alloy 6061-glass particulates reinforced metal matrix composites. International Journal of Modern Engineering Research, 2(5), 3207–3209.
  • Mingard, K. P., Jones, H. G., & Gee, M. G. (2014). Metrological challenges for the reconstruction of 3‐D microstructures by focused ion beam tomography methods. Journal of Microscopy, 253(2), 93–108. https://doi.org/10.1111/jmi.12100
  • Mohanavel, V., Rajan, K., Suresh Kumar, S., Vijayan, G., & Vijayanand, M. S. (2018). Study on mechanical properties of graphite particulates reinforced aluminum matrix composite fabricated by stir casting technique. Materials Today: Proceedings, 5(1), 2945–2950. https://doi.org/10.1016/j.matpr.2018.01.090
  • Ogierman, W., & Kokot, G. (2014). Particle shape influence on elastic-plastic behavior of particle-reinforced composites. Archives of Material Science and Engineering, 67(2), 70–76.
  • Ozden, S., Ekici, R., & Nair, F. (2007). Investigation of impact behavior of aluminum-based SiC particle reinforced metal matrix composites. Composites Part A: Applied Science and Manufacturing, 38(2), 484–494. https://doi.org/10.1016/j.compositesa.2006.02.026
  • Padmavathi, K. R., & Ramakrishnan, R. (2014). Tribological behavior of aluminum hybrid metal matrix composite. Procedia Engineering, 97, 660–667. https://doi.org/10.1016/j.proeng.2014.12.295
  • Prasad Reddy, A., Vamsi Krishna, P., & Rao, R. N. (2019). Tribological behavior of Al6061–2SiC-xGr hybrid metal matrix nanocomposites fabricated through ultrasonically assisted stir casting technique. Silicon, 11(6), 2853–2871. https://doi.org/10.1007/s12633-019-0072-9
  • Raether, F., & Iuga, M. (2006). Effect of particle shape and arrangement on thermoelastic properties of porous ceramics. Journal of the European Ceramic Society, 26(13), 2653–2667. https://doi.org/10.1016/j.jeurceramsoc.2005.07.059
  • Rahman, M. H., & Al Rashed, H. M. (2014). Characterization of silicon carbide reinforced aluminum matrix composites. Procedia Engineering, 90, 103–109. https://doi.org/10.1016/j.proeng.2014.11.821
  • Reddy, P. S., Kesavan, R., & Vijaya Ramnath, B. (2018). Investigation of mechanical properties of aluminum 6061-silicon carbide, boron carbide metal matrix composite. Silicon, 10(2), 495–502. https://doi.org/10.1007/s12633-016-9479-8
  • Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D. D., Bieler, T. R., & Raabe, D. (2010). Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia, 58(4), 1152–1211. https://doi.org/10.1016/j.actamat.2009.10.058
  • Schmidt, K., & Becker, J. (2013). Generating validated 3D models of microporous ceramics. Advanced Engineering Materials, 15(1-2), 40–45. https://doi.org/10.1002/adem.201200097
  • Sharifi, E., Karimzadeh, F., & Enayati, M. H. (2011). Fabrication and evaluation of mechanical and tribological properties of boron carbide reinforced aluminum matrix nanocomposites. Materials & Design, 32(6), 3263–3271. https://doi.org/10.1016/j.matdes.2011.02.033
  • Sivananth, V., Vijayarangan, S., & Rajamanickam, N. (2014). Evaluation of fatigue and impact behavior of titanium carbide reinforced metal matrix composites. Materials Science and Engineering: A, 597, 304–313. https://doi.org/10.1016/j.msea.2014.01.004
  • Srivastava, A., Rai Dixit, A., & Tiwari, S. (2014). A review on fabrication and characterization of aluminum metal matrix composite (AMMC). International Journal of Advance Research and Innovation, 2(2), 516–521.
  • Winkler, D. E. R., Staab, T. E. M., Müller, T. M., & Raether, F. G. (2016). Using a novel microstructure generator to calculate macroscopic properties of multi-phase non-oxide ceramics in comparison to experiments. Ceramics International, 42(1), 325–333. https://doi.org/10.1016/j.ceramint.2015.08.114
  • Xavier, L. F., & Suresh, P. (2016). Wear behavior of aluminum metal matrix composite prepared from industrial waste. The Scientific World Journal, 2016, 1–8. https://doi.org/10.1155/2016/6538345
  • Yolshina, L. A., Muradymov, R. V., Korsun, I. V., Yakovlev, G. A., & Smirnov, S. V. (2016). Novel aluminium-graphene and aluminium-graphite metallic composite materials. Journal of Alloys and Compounds, 663, 449–459. https://doi.org/10.1016/j.jallcom.2015.12.084