243
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering | Research Article

Influence of partial cover thickness and mortar quality on steel corrosion in a chloride environment

&
Article: 2297474 | Received 11 Sep 2023, Accepted 14 Dec 2023, Published online: 16 Jan 2024

References

  • Abd, S. M., Mhaimeed, I. S., Tayeh, B. A., Najm, H. M., & Qaidi, S. (2023). Investigation of the use of textile carbon yarns as sustainable shear reinforcement in concrete beams. Case Studies in Construction Materials, 18, e01765. https://doi.org/10.1016/j.cscm.2022.e01765
  • ACI Committee. (2015). Specifications for tolerances for concrete construction and materials and commentary. American Concrete Institute (ACI 117-10).
  • Al-Galawi, NM, Al-Tameemi, AA, & Al-Jarrah, SH (2016). Effect of age and concrete cover thickness on steel reinforcement corrosion at splash zone in reinforced concrete hydraulic structures. International Journal of Scientific & Technology Research, 5(9), 129–133.
  • Andrade, C. (2019). Propagation of reinforcement corrosion: principles, testing and modelling. Materials and Structures, 52(1), 2. https://doi.org/10.1617/s11527-018-1301-1
  • Andrade, C., & Alonso, C. (2004). Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Materials and Structures, 37(9), 623–643. https://doi.org/10.1007/BF02483292
  • Andrade, C., & d’Andrea, R. (2010). Electrical resistivity as microstructural parameter for the modelling of service life of reinforced concrete structures [Paper presentation]. 2nd International Symposium on Service Life Design for Infrastructure (pp. 379–388).
  • Andrade, C., & González, J. A. (1978). Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Materials and Corrosion, 29(8), 515–519. https://doi.org/10.1002/maco.19780290804
  • Asamoto, S., Sato, J., Okazaki, S., Chun, P. J., Sahamitmongkol, R., & Nguyen, G. H. (2021). The cover depth effect on corrosion-induced deterioration of reinforced concrete focusing on water penetration: Field survey and laboratory study. Materials, 14(13), 3478. https://doi.org/10.3390/ma14133478
  • Aslam, F., Zaid, O., Althoey, F., Alyami, SH, Qaidi, SM, de Prado Gil, J., & Martínez‐García, R. (2023). Evaluating the influence of fly ash and glass waste on the characteristics of coconut fibers reinforced concrete. Structural Concrete, 24(2), 2440–2459. https://doi.org/10.1002/suco.202200183
  • ASTM G61-86. (2014) Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of iron-, nickel-, or cobalt-based alloys. ASTM International.
  • Bohni, H., (2005). Corrosion in reinforced concrete structures (pp. 75–76). England, UK: CRC Press LLC.
  • British Standards Institution. (2006). Concrete–complementary British Standard to BS EN 206-1: Specification for Constituent Materials and Concrete. England, UK: BSI.
  • Chen, L., & Su, R. K. L. (2021). Corrosion rate measurement by using polarization resistance method for microcell and macrocell corrosion: Theoretical analysis and experimental work with simulated concrete pore solution. Construction and Building Materials, 267, 121003. https://doi.org/10.1016/j.conbuildmat.2020.121003
  • Clark, L.A., Shammas-Toma, M.G.K., Seymour, D.E., Pallett, P.F., Marsh, B.K., 1997. How can we get the cover we need? Structural Engineering, 75, 289–296.
  • Elsener, B. (2000). Corrosion of steel in concrete. Corrosion and Environmental Degradation, 2, 389–436.
  • Elsener, B. (2002). Macrocell corrosion of steel in concrete–implications for corrosion monitoring. Cement and Concrete Composites, 24(1), 65–72. https://doi.org/10.1016/S0958-9465(01)00027-0
  • Emad, W., Mohammed, A. S., Kurda, R., Ghafor, K., Cavaleri, L., Qaidi, S. M. A., Hassan, A. M. T., & Asterics, P. G. (2022). Prediction of concrete materials compressive strength using surrogate models. Structures (46),1243–1267.
  • Gu, X., Dong, Z., & Jin, Z. (2018). Macrocell corrosion between crossed steel rebars embedded in concrete under chloride environments. In MATEC Web of Conferences (Vol. 199, p. 04005). EDP Sciences. https://doi.org/10.1051/matecconf/201819904005
  • Hu, J. Y., Zhang, S. S., Chen, E., & Li, W. G. (2022). A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Construction and Building Materials, 325, 126718. https://doi.org/10.1016/j.conbuildmat.2022.126718
  • Hussain, R. R. (2011). Electrochemical experimental measurement of macrocell corrosion half-cell potential replicating the re-corrosion of actual refurbished works in RC structures. International Journal of Electrochemical Science, 6(1), 199–205. https://doi.org/10.1016/S1452-3981(23)14986-8
  • Itagaki, M. (2012). Principle and analytical method of impedance spectroscopy. Journal of the surface science society of Japan, 33(2), 64–68. (in Japanese).
  • Japan Society of Civil Engineers (2007). Standard specifications for concrete structures “Material and construction”. (JSCE).
  • Katayama H., (2014). Surface and interfacial analysis using electrochemical impedance measurement. Journal of Japan Institute of Metals and Materials, 78(11), 419–425. (in Japanese). https://doi.org/10.2320/jinstmet.JB201402
  • Kawahigashi, T., Kobayashi, K., & miyagawa, T. (2003). A study of macro-cell and micro-cell corrosion of steel in concrete. Doboku Gakkai Ronbunshu, 2003(732), 1–15. https://doi.org/10.2208/jscej.2003.732_1
  • Kim, Y. Y., Kim, J. M., Bang, J. W., & Kwon, S. J. (2014). Effect of cover depth, w/c ratio, and crack width on half cell potential in cracked concrete exposed to salt sprayed condition. Construction and Building Materials, 54, 636–645. https://doi.org/10.1016/j.conbuildmat.2014.01.009
  • Kobayashi, K., & Miyagawa, T. (2001). Study on estimation of corrosion rate of reinforcing steel in concrete by measuring polarization resistance. Doboku Gakkai Ronbunshu, 669, 173–186. (in Japanese).
  • Lopez-Calvo, H. Z., Montes-García, P., Jiménez-Quero, V. G., Gómez-Barranco, H., Bremner, T. W., and Thomas, M. D. A., (2018). Influence of crack width, cover depth and concrete quality on corrosion of steel in HPC containing corrosion inhibiting admixtures and fly ash. Cement and Concrete Composite, 88, 200–210 https://doi.org/10.1016/j.cemconcomp.2018.01.016
  • M. F. F. Menna Barreto, J. F. G. Timm, A. Passuello, D. C. C. Dal Molin, and J. R. Masuero (2021). Life cycle costs and impacts of massive slabs with varying concrete cover, Cleaner Engineering and Technology, 5, 10256.
  • Mansfeld, F. (1971). Area relationships in galvanic corrosion. Corrosion, 27(10), 436–442. https://doi.org/10.5006/0010-9312-27.10.436
  • Menna Barreto, M. F. F., Maran, A. P., Dal Molin, D. C. C., Masuero, J.R., (2018). Cover to steel in reinforced concrete structures and their spacers. In Concrete cover thickness and plastic spacers (1st ed.). LAP LAMBERT Academic Publishing.
  • Miyazato, S., & Otsuki, N. (2010). Steel corrosion induced by chloride or carbonation in mortar with bending cracks or joints. Journal of Advanced Concrete Technology, 8(2), 135–144. https://doi.org/10.3151/jact.8.135
  • Miyazato, S., & Otsuki, N. (2022). Measurement method for macrocell corrosion in concrete specimen using a segmented steel bar. Journal of Advanced Concrete Technology, 20(3), 222–235. https://doi.org/10.3151/jact.20.222
  • Montemor, M. F., Simoes, A. M. P., & Ferreira, M. G. S. (2003). Chloride-induced corrosion on reinforcing steel: From the fundamentals to the monitoring techniques. Cement and Concrete Composites, 25(4-5), 491–502. https://doi.org/10.1016/S0958-9465(02)00089-6
  • Nanayakkara, O., & Kato, Y. (2009). Macro-cell corrosion in reinforcement of concrete under non-homogeneous chloride environment. Journal of Advanced Concrete Technology, 7(1), 31–40. https://doi.org/10.3151/jact.7.31
  • Otsuki, N., Madlangbayan, M. S., Nishida, T., Saito, T., & Baccay, M. A. (2009). Temperature dependency of chloride induced corrosion in concrete. Journal of Advanced Concrete Technology, 7(1), 41–50. https://doi.org/10.3151/jact.7.41
  • P. D. Ronne (2005), “Variation in cover to reinforcement: Local and international trends,” Concrete Beton, 111, 7–13.
  • Paul, S. C, & Adewumi, J. B. (2018). A review on reinforcement corrosion mechanism and measurement methods in concrete. Civil Engineering Research Journal, 5(3), 80–90.
  • Paul, S. C., & van Zijl, G. P. (2014). Crack formation and chloride induced corrosion in reinforced strain hardening cement-based composite (R/SHCC). Journal of Advanced Concrete Technology, 12(9), 340–351.
  • Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Construction and Building Materials, 269, 121240. https://doi.org/10.1016/j.conbuildmat.2020.121240
  • Schiesl, P. (1988). RILEM; Technical Committee 60-CSC: Corrosion of Steel in Concrete.
  • Shukla, S. K. (2022). Seven research mantras: A short guide for researchers. International Journal of Geosynthetics and Ground Engineering, 8(6), 75. https://doi.org/10.1007/s40891-022-00419-6
  • Stern, M., & Geary, A. L. (1957). Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society, 104(1), 56. https://doi.org/10.1149/1.2428496
  • Suryanto, B., Kim, J., McCarter, W. J., Starrs, G., & Aitken, M. W. (2020). Assessing the performance and transport properties of concrete using electrical property measurements. Journal of Advanced Concrete Technology, 18(7), 437–455. https://doi.org/10.3151/jact.18.437
  • T. Maruya, H. Takeda, K. Horiguchi, S. Koyama, and K. L. Hsu.(2007), Simulation of steel corrosion in concrete based on the model of macro-cell corrosion circuit, Journal of Advanced Concrete Technology, 5(3), 343–362. https://doi.org/10.3151/jact.5.343
  • Tsuru, T., Maeda, R. and Haruyama, S., (1979). Application of A-C corrosion monitor to localized corrosion. Corrosion Engineering, 28(12), 638–644. (in Japanese) https://doi.org/10.3323/jcorr1974.28.12_638
  • Tuutti, K. (1982). Corrosion of steel in concrete. Cement-och betonginst, 468, 82–84.
  • Verma, SK, Bhadauria, SS, & Akhtar, S. (2013). Evaluating effect of chloride attack and concrete cover on the probability of corrosion. Frontiers of Structural and Civil Engineering, 7, 379–390. https://doi.org/10.1007/s11709-013-0223-9
  • Zhou, X., Shu, J., Zhang, J., Yan, Y., Gan, W., (2015). The impact of concrete cover thickness and chemical alkalinity on reinforcement corrosion. Advanced Materials Research, 1065–1069, 1957–1963. https://doi.org/10.4028/www.scientific.net/AMR.1065-1069.1957