287
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Enhancing geopolymer cement self-healing property with elastomeric materials

, ORCID Icon, &
Article: 2297488 | Received 13 Sep 2023, Accepted 14 Dec 2023, Published online: 16 Jan 2024

References

  • Abbas, G., Irawan, S., Kumar, S., & Elrayah, A. A. I. (2013). Improving oil well cement slurry performance using hydroxypropyl methylcellulose polymer. Advanced Materials Research, 787, 222–227. https://doi.org/10.4028/www.scientific.net/AMR.787.222
  • Abid, K., Gholami, R., Choate, P., & Nagaratnam, B. H. (2015). A review on cement degradation under CO2-rich environment of sequestration projects. Journal of Natural Gas Science and Engineering, 27, 1149–1157. https://doi.org/10.1016/j.jngse.2015.09.061
  • Al Bakri Abdullah, M. M., Kamarudin, H., Abdulkareem, O. A. K. A., Ghazali, C. M. R., Rafiza, A. R., Norazian, M. N. (2012). Optimization of alkaline activator/fly ash ratio on the compressive strength of manufacturing fly ash-based geopolymer. Applied Mechanics and Materials, 110–116, 734–739. https://doi.org/10.4028/www.scientific.net/AMM.110-116.734
  • API (2019a). API RP-10B2: Recommended practice for testing well cements (2nd ed.). American Petroleum Institute (API). 2019.
  • API (2019b). API SPEC 10A: Cements and materials for well cementing. American Petroleum Institute (API).
  • API (2019c). API RP-10B5: Recommended practice on determination of shrinkage and expansion of well cement formulations at atmospheric pressure. American Petroleum Institute (API).
  • Barlet-Gouédard, V., Rimmelé, G., & Porcherie, O. (2007). Well technologies for CO2 geological storage: CO2-resistant cement. Oil & Gas Science and Technology, 62(3), 325–334. https://doi.org/10.2516/ogst:2007027
  • Broni-Bediako, E., Joel, O. F., & Ofori-Sarpong, G. (2016). Oil well cement additives: A review of the common types. Oil & Gas Research, 112, 10000112. https://doi.org/10.4172/2472-0518.1000112
  • Chenevert, M. E., & Shrestha, B. K. (1991). Chemical shrinkage properties of oilfield cements. SPE Drilling Engineering, 6(1), 37–231. https://doi.org/10.2118/16654-PA
  • Diaz, E. I., & Allouche, E. N. (2010). Recycling of fly ash into geopolymer concrete: Creation of a database. 2010 IEEE Green Technologies Conference, Grapevine, TX, USA. https://doi.org/10.1109/GREEN.2010.5453790
  • He, Z., Zhu, X., Wang, J., Mu, M., & Wang, Y. (2019). Comparison of CO2 emissions from OPC and recycled cement production. Construction and Building Materials, 211, 965–973. https://doi.org/10.1016/j.conbuildmat.2019.03.289
  • Hewayde, E., Nehdi, M., Allouche, E., & Nakhla, G. (2006). Effect of geopolymer cement on microstructure, compressive strength and sulphuric acid resistance of concrete. Magazine of Concrete Research, 58(5), 321–331. https://doi.org/10.1680/macr.2006.58.5.321
  • Igbani, S., Appah, D., & Ogoni, H. A. (2020). The application of response surface methodology in Minitab 16, to identify the optimal, comfort, and adverse zones of compressive strength responses in ferrous oilwell cement sheath systems. International Journal of Engineering and Modern Technology, 6(3), 20–39.
  • Khalifeh, M., Hodne, H., Saasen, A., Integrity, O., & Eduok, E. I. (2016, October 25). Usability of geopolymers for oil well cementing applications: Reaction mechanisms, pumpability, and properties. SPE Asia Pacific Oil & Gas Conference and Exhibition, Perth, Australia. https://doi.org/10.2118/182354-MS
  • Khalifeh, M., Saasen, A., & Vrålstad, T. (2014, April 2). Potential utilization of geopolymers in plug and abandonment operations. SPE Bergen One Day Seminar, Bergen, Norway. https://doi.org/10.2118/169231-MS
  • Khalifeh, M., Todorovic, J., Vrålstad, T., Saasen, A., & Hodne, H. (2016). Long-term durability of rock-based geopolymers aged at downhole conditions for oil well cementing operations. Journal of Sustainable Cement-Based Materials, 6(4), 217–230. https://doi.org/10.1080/21650373.2016.1196466
  • Kiran, R., Teodoriu, C., Dadmohammadi, Y., Nygaard, R., Wood, D., Mokhtari, M., & Salehi, S. (2017). Identification and evaluation of well integrity and causes of failure of well integrity barriers (A review). Journal of Natural Gas Science and Engineering, 45, 511–526. https://doi.org/10.1016/j.jngse.2017.05.009
  • Lemougna, P. N., Wang, K., Tang, Q., Melo, U. C., & Cui, X. (2016). Recent developments on inorganic polymers synthesis and applications. Ceramics International, 42(14), 15142–15159. https://doi.org/10.1016/j.ceramint.2016.07.027
  • Liteanu, E., Spiers, C. J., & Peach, C. J. (2009). Failure behaviour wellbore cement in the presence of water and supercritical CO2. Energy Procedia, 1(1), 3553–3560. https://doi.org/10.1016/j.egypro.2009.02.149
  • Liu, X., Aughenbaugh, K., Nair, S., Shuck, M., & van Oort, E. (2016, September 14). Solidification of synthetic-based drilling mud using geopolymers. SPE Deepwater Drilling and Completion Conference, Galveston, TX, USA. https://doi.org/10.2118/180325-MS
  • Majidi, B. (2013). Geopolymer technology, from fundamentals to advanced applications: A review. Materials Technology, 24, 79–87. https://doi.org/10.1179/175355509X449355
  • Mao, W., Litina, C., & Al-Tabbaa, A. (2020). Development and application of novel sodium silicate microcapsule-based self-healing oil well cement. Materials, 13(2), 456. https://doi.org/10.3390/ma13020456
  • Merlini, M., Artioli, G., Cerulli, T., Cella, F., & Bravo, A. (2008). Tricalcium aluminate hydration in additivated systems. A crystallographic study by SR-XRPD. Cement and Concrete Research, 38(4), 477–486. https://doi.org/10.1016/j.cemconres.2007.11.011
  • Nagral, M. R., Ostwal, T., & Chitawadagi, M. (2014). Effect of curing temperature and curing hours on the properties of geopolymer concrete. International Journal of Computational Engineering Research, 4(9), 1–11.
  • Nasvi, M. C. M., Ranjith, P. G., & Sanjayan, J. (2012, June). Comparison of mechanical behaviors of geopolymer and class G cement as well cement at different curing temperatures for geological sequestration of carbon dioxide. 46th U.S. Rock Mechanics/GeoMechanics Symposium, Chicago, IL, USA.
  • Nasvi, M. C. M., Ranjith, P. G., Sanjayan, J., & Bui, H. (2014). Effect of temperature on permeability of geopolymer: A primary well sealant for carbon capture and storage wells. Fuel, 117, 354–363. https://doi.org/10.1016/j.fuel.2013.09.007
  • Nasvi, M. C. M., Ranjith, P., & Sanjayan, J. (2011). Geopolymer as well cement and the variation of its mechanical behavior with curing temperature. Greenhouse Gases Science and Technology, 2(1), 46–58. https://doi.org/10.1002/ghg.39
  • Paiva, M. D. M., Silva, E. C. C. M., Melo, D. M. A., Martinelli, A. E., & Schneider, J. F. (2018). A geopolymer cementing system for oil wells subject to steam injection. Journal of Petroleum Science and Engineering, 169, 748–759. https://doi.org/10.1016/j.petrol.2018.06.022
  • Pandey, B., Kinrade, S. D., & Catalan, L. J. J. (2012). Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes. Journal of Environmental Management, 101, 59–67. https://doi.org/10.1016/j.jenvman.2012.01.029
  • PETRONAS (2016). PETRONAS technical guidelines – Cementing. PETRONAS.
  • Rahman, S. H. A., Irawan, S., Shafiq, N., & Rajeswary, R. (2020). Investigating the expansion characteristics of geopolymer cement samples in a water bath and compared with the expansion of ASTM Class-G cement. Heliyon, 6(2), e03478. https://doi.org/10.1016/j.heliyon.2020.e03478
  • Rahman, S. H. A., Zulkarnain, N. N., & Shafiq, N. (2021). Experimental study and design of experiment using statistical analysis for the development of geopolymer matrix for oil-well cementing for enhancing the integrity. Crystals, 11(2), 139. https://doi.org/10.3390/cryst11020139
  • Reddy, B. R., Liang, F., & Fitzgerald, R. (2009, April 20). Self-healing cements that heal without dependence on fluid contact. SPE International Symposium ion Oilfield Chemistry, The Woodlands, TX, USA. https://doi.org/10.2118/121555-MS
  • Reddy, B. R., Xu, Y., Ravi, K., Gray, D., & Pattillo, P. D. (2009). Cement-shrinkage measurement in oilwell cementing—A comparative study of laboratory methods and procedures. SPE Drilling & Completion, 24(1), 104–114. https://doi.org/10.2118/103610-PA
  • Richhariya, G., Dora, D. T. K., Parmar, K. R., Pant, K. K., Singhal, N., Lal, K., & Kundu, P. P. (2020). Development of self-healing cement slurry through the incorporation of dual-encapsulated polyacrylamide for the prevention of water ingress in oil well. Materials, 13(13), 2921. https://doi.org/10.3390/ma13132921
  • Ridha, S., Abd Hamid, A. I., Abdul Halim, A. H., & Zamzuri, N. A. (2018). Elasticity and expansion test performance of geopolymer as oil well cement. IOP Conference Series: Earth and Environmental Science, 140, 012147. https://doi.org/10.1088/1755-1315/140/1/012147
  • Ridha, S., Akmaluddin, M., & Salehudin, S. S. (2016). Microstructure investigation on nano-geopolymer cement cured under HPHT condition. ARPN Journal of Engineering and Applied Science, 11(1), 144–149.
  • Ridha, S., Setiawan, R. A., Pramana, A. A., & Abdurrahman, M. (2020). Impact of wet supercritical CO2 injection on fly ash geopolymer cement under elevated temperatures for well cement applications. Journal of Petroleum Exploration and Production Technology, 10(2), 243–247. https://doi.org/10.1007/s13202-019-0693-y
  • Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069
  • Salehi, S., Khattak, M. J., Ali, N., & Rizvi, H. R. (2016, March). Development of geopolymer-based cement slurries with enhanced thickening time, compressive and shear bond strength and durability. IADC/SPE Drilling Conference and Exhibition, Fort Worth, TX, USA. https://doi.org/10.2118/178793-MS
  • Salehi, S., Khattak, M. J., Ali, N., Ezeakacha, C., & Saleh, F. K. (2017). Study and use of geopolymer mixtures for oil and gas well cementing applications. Journal of Energy Resources Technology, 140(1), 012908. https://doi.org/10.1115/1.4037713
  • Santra, A., Reddy, B. R., Liang, F., & Fitzgerald, R. (2009, April 20–22). Reaction of CO2 with Portland cement at downhole conditions and the role of pozzolanic supplements. SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA. https://doi.org/10.2118/121103-MS
  • Schütz, M. K., dos Santos, L. M., Coteskvisk, P. M., Menezes, S. C., Einloft, S., Dalla Vecchia, F. (2019). Evaluation of CO2 attack in wellbore class G cement: influence of epoxy resins, composites and minerals as additives. Greenhouse Gases Science and Technology, 9(6), 1276–1287. https://doi.org/10.1002/ghg.1928
  • Sedić, K., Ukrainczyk, N., Mandić, V., Gaurina-Međimurec, N., & Šipušić, J. (2020). Carbonation of Portland-zeolite and geopolymer well-cement composites under geologic CO2 sequestration conditions. Cement and Concrete Composites, 111, 103615. https://doi.org/10.1016/j.cemconcomp.2020.103615
  • Uehara, M. (2010). New concrete with low environmental load using the geopolymer method. Quarterly Report of RTRI, 51(1), 1–7. https://doi.org/10.2219/rtriqr.51.1
  • Van Jaarsveld, J. G. S., Van Deventer, J. S. J., & Lorenzen, L. (1997). The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications. Minerals Engineering, 10(7), 659–669. https://doi.org/10.1016/S0892-6875(97)00046-0
  • Wardhono, A. (2018). The effect of sodium hydroxide molarity on strength development of non-cement class C fly ash geopolymer mortar. Journal of Physics: Conference Series, 947, 012001. https://doi.org/10.1088/1742-6596/947/1/012001
  • Yang, Z. X., Ha, N. R., Jang, M. S., & Hwang, K. H. (2009). Geopolymer concrete fabricated by waste concrete sludge with silica fume. Materials Science Forum, 620–622, 791–794. https://doi.org/10.4028/www.scientific.net/MSF.620-622.791
  • Zahid, M., Shafiq, N., Isa, M. H., & Gil, L. (2018). Statistical modeling and mix design optimization of fly ash based engineered geopolymer composite using response surface methodology. Journal of Cleaner Production, 194, 483–498. https://doi.org/10.1016/j.jclepro.2018.05.158
  • Zulkarnain, N. N., Farhan, S. A., Sazali, Y. A., Shafiq, N., Rahman, S. H. A., Abd Hamid, A. I., & Habarudin, M. F. (2021). Reducing the waiting-on-cement time of geopolymer well cement using calcium chloride (CaCl2) as the accelerator: Analysis of the compressive strength and acoustic impedance for well logging. Sustainability, 13(11), 6128. https://doi.org/10.3390/su13116128