319
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Interfacial bond capacity prediction of concrete-filled steel tubes utilizing artificial neural network

ORCID Icon, , , &
Article: 2297501 | Received 16 Aug 2023, Accepted 14 Dec 2023, Published online: 13 Jan 2024

References

  • Abendeh, R. M., Salman, D., & Al Louzi, R. (2022). Experimental and numerical investigations of interfacial bond in self-compacting concrete-filled steel tubes made with waste steel slag aggregates. Developments in the Built Environment, 11, 100080. https://doi.org/10.1016/j.dibe.2022.100080
  • Abendeh, R., Ahmad, H. S., & Hunaiti, Y. M. (2016). Experimental studies on the behavior of concrete-filled steel tubes incorporating crumb rubber. Journal of Constructional Steel Research, 122, 251–260. https://doi.org/10.1016/j.jcsr.2016.03.022
  • Ahmad, H. S., Abendeh, R. M., & Hunaiti, Y. M. (2023). Evaluation of concrete–steel interfaces in steel tubes filled with chipped rubber–concrete. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 176(2), 91–113. https://doi.org/10.1680/jstbu.20.00162
  • Ahmadi, M., Naderpour, H., & Kheyroddin, A. A. N. N. (2017). ANN model for predicting the compressive strength of circular steel-confined concrete. International Journal of Civil Engineering, 15(2), 213–221. https://doi.org/10.1007/s40999-016-0096-0
  • Allouzi, R. A., Almasaeid, H. H., Salman, D. G., Abendeh, R. M., & Rabayah, H. S. (2022). Prediction of bond-slip behavior of circular/squared concrete-filled steel tubes. Buildings, 12(4), 456. https://doi.org/10.3390/buildings12040456
  • Allouzi, R., Almasaeid, H., Alkloub, A., Ayadi, O., Allouzi, R., & Alajarmeh, R. (2023). Lightweight foamed concrete for houses in Jordan. Case Studies in Construction Materials, 18, e01924. https://doi.org/10.1016/j.cscm.2023.e01924
  • Aly, T., Elchalakani, M., Thayalan, P., & Patnaikuni, I. (2010). Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns. Journal of Constructional Steel Research, 66(1), 11–18. https://doi.org/10.1016/j.jcsr.2009.08.002
  • Apostolopoulou, M., Asteris, P. G., Armaghani, D. J., Douvika, M. G., Lourenço, P. B., Cavaleri, L., Bakolas, A., & Moropoulou, A. (2020). Mapping and holistic design of natural hydraulic lime mortars. Cement and Concrete Research, 136, 106167. https://doi.org/10.1016/j.cemconres.2020.106167
  • Armaghani, D. J., & Asteris, P. G. (2021). A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Computing and Applications, 33(9), 4501–4532. https://doi.org/10.1007/s00521-020-05244-4
  • Asteris, P. G., & Mokos, V. G. (2020). Concrete compressive strength using artificial neural networks. Neural Computing and Applications, 32(15), 11807–11826. https://doi.org/10.1007/s00521-019-04663-2
  • Asteris, P. G., Koopialipoor, M., Armaghani, D. J., Kotsonis, E. A., & Lourenço, P. B. (2021). Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Computing and Applications, 33(19), 13089–13121. https://doi.org/10.1007/s00521-021-06004-8
  • Asteris, P. G., Skentou, A. D., Bardhan, A., Samui, P., & Pilakoutas, K. (2021). Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cement and Concrete Research, 145, 106449. https://doi.org/10.1016/j.cemconres.2021.106449
  • Basarir, H., Elchalakani, M., & Karrech, A. (2019). The prediction of ultimate pure bending moment of concrete-filled steel tubes by adaptive neuro-fuzzy inference system (ANFIS). Neural Computing and Applications, 31(S2), 1239–1252. https://doi.org/10.1007/s00521-017-3108-3
  • Beheshti-Aval, B. (2012). Strength evaluation of concrete-filled steel tubes subjected to axial-flexural loading by ACI and AISC-LRFD codes along with three dimensional nonlinear analysis. International Journal of Civil Engineering, 10(4), 280–290.
  • Chen, L., Dai, J., Jin, Q., Chen, L., & Liu, X. (2015). Refining bond–slip constitutive relationship between checkered steel tube and concrete. Construction and Building Materials, 79, 153–164. https://doi.org/10.1016/j.conbuildmat.2014.12.058
  • Chen, Z. H., Qu, X. S., Wang, X. D., Sun, R. R., & Li, L. M. (2009). Experimental study on the interface bearing capacity on concrete-filled square steel tube. Journal of Harbin Institute of Technology, 41, 27–32.
  • De Oliveira, W. L. A., De Nardin, S., de Cresce El, A. L. H., & El Debs, M. K. (2009). Influence of concrete strength and length/diameter on the axial capacity of CFT columns. Journal of Constructional Steel Research, 65(12), 2103–2110. https://doi.org/10.1016/j.jcsr.2009.07.004
  • El Tabach, E., Lancelot, L., Shahrour, I., & Najjar, Y. (2007). Use of artificial neural network simulation metamodelling to assess groundwater contamination in a road project. Mathematical and Computer Modelling, 45(7–8), 766–776. https://doi.org/10.1016/j.mcm.2006.07.020
  • Faradonbeh, R. S., Hasanipanah, M., Amnieh, H. B., Armaghani, D. J., & Monjezi, M. (2018). Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environmental Monitoring and Assessment, 190(6), 351. https://doi.org/10.1007/s10661-018-6719-y
  • Farooq, F., Ahmed, W., Akbar, A., Aslam, F., & Alyousef, R. (2021). Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners. Journal of Cleaner Production, 292, 126032. https://doi.org/10.1016/j.jclepro.2021.126032
  • Fu, Z. Q., Ge, H. B., Ji, B. H., & Chen, J. J. (2018). Interface bond behaviour between circular steel tube and lightweight aggregate concrete. Advanced Steel Construction, 14(3), 424–437. https://doi.org/10.18057/IJASC.2018.14.3.7
  • Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049–1068. https://doi.org/10.1016/j.jcsr.2003.10.001
  • Gupta, P. K., Sarda, S. M., & Kumar, M. S. (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63(2), 182–193. https://doi.org/10.1016/j.jcsr.2006.04.004
  • Han, L. H., & Yang, Y. F. (2001). Influence of concrete compaction on the behavior of concrete filled steel tubes with rectangular sections. Advances in Structural Engineering, 4(2), 93–100. https://doi.org/10.1260/1369433011502381
  • Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. https://doi.org/10.1016/j.jcsr.2014.04.016
  • Huang, F., Yu, X., & Chen, B. (2012). The structural performance of axially loaded CFST columns under various loading conditions. Steel & Composite Structures, 13(5), 451–471. https://doi.org/10.12989/scs.2012.13.5.451
  • Hunaiti, Y. M. (1996). Composite action of foamed and lightweight aggregate concrete. Journal of Materials in Civil Engineering, 8(3), 111–113. https://doi.org/10.1061/(asce)0899-1561(1996)8:3(111)
  • Ilyas, I., Zafar, A., Javed, M. F., Farooq, F., Aslam, F., Musarat, M. A., & Vatin, N. I. (2021). Forecasting strength of CFRP confined concrete using multi expression programming. Materials, 14(23), 7134. https://doi.org/10.3390/ma14237134
  • Jahed Armaghani, D., Safari, V., Fahimifar, A., Mohd Amin, M. F., Monjezi, M. A., & Mohammadi, M. A. (2018). Uniaxial compressive strength prediction through a new technique based on gene expression programming. Neural Computing and Applications, 30(11), 3523–3532. https://doi.org/10.1007/s00521-017-2939-2
  • Javed, M. F., Farooq, F., Memon, S. A., Akbar, A., Khan, M. A., Aslam, F., Alyousef, R., Alabduljabbar, H., & Rehman, S. K. U. (2020). New prediction model for the ultimate axial capacity of concrete-filled steel tubes: An evolutionary approach. Crystals, 10(9), 741. https://doi.org/10.3390/cryst10090741
  • Ke, X., Sun, H., & Yang, Z. (2016, January). Calculation on bond strength of high-strength concrete filled steel tube. In 2015 4th International Conference on Sensors, Measurement and Intelligent Materials (pp. 995–999). Atlantis Press. https://doi.org/10.2991/icsmim-15.2016.183
  • Kilpatrick, A. E., & Rangan, B. V. (1999). Influence of interfacial shear transfer on behavior of concrete-filled steel tubular columns. Structural Journal, 96(4), 642–648. https://doi.org/10.14359/702
  • Liu, J., Teng, Y., Zhang, Y., Wang, X., & Chen, Y. F. (2018). Axial stress-strain behavior of high-strength concrete confined by circular thin-walled steel tubes. Construction and Building Materials, 177, 366–377. https://doi.org/10.1016/j.conbuildmat.2018.05.021
  • Lu, Y., Liu, Z., Li, S., & Tang, W. (2018). Bond behavior of steel-fiber-reinforced self-stressing and self-compacting concrete-filled steel tube columns for a period of 2.5 years. Construction and Building Materials, 167, 33–43. https://doi.org/10.1016/j.conbuildmat.2018.01.144
  • Lv, J., Zhou, T., Du, Q., Li, K., & Jin, L. (2020). Research on the bond behavior of preplaced aggregate concrete-filled steel tube columns. Materials, 13(2), 300. https://doi.org/10.3390/ma13020300
  • Ly, H. B., Pham, B. T., Le, L. M., Le, T. T., Le, V. M., & Asteris, P. G. (2021). Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Computing and Applications, 33(8), 3437–3458. https://doi.org/10.1007/s00521-020-05214-w
  • Lyu, W. Q., & Han, L. H. (2019). Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes. Journal of Constructional Steel Research, 155, 438–459. https://doi.org/10.1016/j.jcsr.2018.12.028
  • Manasrah, A., Masoud, M., Jaradat, Y., & Bevilacqua, P. (2022). Investigation of a real-time dynamic model for a PV cooling system. Energies, 15(5), 1836. https://doi.org/10.3390/en15051836
  • Mansour, M. Y., Dicleli, M., Lee, J. Y., & Zhang, J. J. E. S. (2004). Predicting the shear strength of reinforced concrete beams using artificial neural networks. Engineering Structures, 26(6), 781–799. https://doi.org/10.1016/j.engstruct.2004.01.011
  • Martinelli, E. (2021). A general numerical model for simulating the long-term response of two-layer composite systems in partial interaction. Composite Structures, 257, 112929. https://doi.org/10.1016/j.compstruct.2020.112929
  • Moradi, M. J., Daneshvar, K., Ghazi-Nader, D., & Hajiloo, H. (2021). The prediction of fire performance of concrete-filled steel tubes (CFST) using artificial neural network. Thin-Walled Structures, 161, 107499. https://doi.org/10.1016/j.tws.2021.107499
  • Morishita, Y. (1979). Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads. Transactions of the Japan Concrete Institute, 1, 359–366.
  • Olden, J. D., & Jackson, D. A. (2002). Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling, 154(1–2), 135–150. https://doi.org/10.1016/s0304-3800(02)00064-9
  • Parsley, M. A., & Yura, J. A. (2000). Push-out behavior of rectangular concrete-filled steel tubes. Special Publication, 196, 87–108. https://doi.org/10.14359/9998
  • Perea, T., Leon, R. T., Hajjar, J. F., & Denavit, M. D. (2014). Full-scale tests of slender concrete-filled tubes: Interaction behavior. Journal of Structural Engineering, 140(9), 04014054. https://doi.org/10.1061/(asce)st.1943-541x.0000949
  • Psyllaki, P., Stamatiou, K., Iliadis, I., Mourlas, A., Asteris, P., & Vaxevanidis, N. (2018). Surface treatment of tool steels against galling failure. MATEC Web of Conferences, 188, 04024. https://doi.org/10.1051/matecconf/201818804024
  • Qu, X., Chen, Z., Nethercot, D. A., Gardner, L., & Theofanous, M. (2013). Load-reversed push-out tests on rectangular CFST columns. Journal of Constructional Steel Research, 81, 35–43. https://doi.org/10.1016/j.jcsr.2012.11.003
  • Qu, X., Chen, Z., Nethercot, D. A., Gardner, L., & Theofanous, M. (2015). Push-out tests and bond strength of rectangular CFST columns.
  • Roeder, C. W., Cameron, B., & Brown, C. B. (1999). Composite action in concrete filled tubes. Journal of Structural Engineering, 125(5), 477–484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
  • Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, 130(2), 180–188. https://doi.org/10.1061/(asce)0733-9445(2004)130:2(180)
  • Sangeetha, P., Muthuraman, R. M., Dachina, G., Dhivya, M., Janani, S., & Madumathi, S. (2018). Behaviour of concrete filled steel tubes. Journal of Informatics & Mathematical Sciences, 10(1), 297–304.
  • Sarir, P., Chen, J., Asteris, P. G., Armaghani, D. J., & Tahir, M. M. (2021). Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns. Engineering with Computers, 37(1), 1–19. https://doi.org/10.1007/s00366-019-00808-y
  • Sarir, P., Shen, S. L., Wang, Z. F., Chen, J., Horpibulsuk, S., & Pham, B. T. (2021). Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC. Engineering with Computers, 37(2), 797–807. https://doi.org/10.1007/s00366-019-00855-5
  • Shaker, F. M., Daif, M. S., Deifalla, A. F., & Ayash, N. M. (2022). Parametric study on the behavior of steel tube columns with infilled concrete—An analytical study. Sustainability, 14(21), 14024. https://doi.org/10.3390/su142114024
  • Shakir-Khalil, H. (1993a). Pushout strength of concrete-filled steel hollow section tubes. Structural Engineer, 71(13), 230–343.
  • Shakir-Khalil, H. (1993b). Resistance of concrete-filled steel tubes to pushout forces. Structural Engineer, 71(13), 234–243.
  • Szadkowska, M., & Szmigiera, E. (2021). Analysis of shrinkage influence on bond in CFST elements filled with SCC. Journal of Constructional Steel Research, 184, 106824. https://doi.org/10.1016/j.jcsr.2021.106824
  • Tao, Z., Han, L. H., Uy, B., & Chen, X. (2011). Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns. Journal of Constructional Steel Research, 67(3), 484–496. https://doi.org/10.1016/j.jcsr.2010.09.006
  • Tao, Z., Song, T. Y., Uy, B., & Han, L. H. (2016). Bond behavior in concrete-filled steel tubes. Journal of Constructional Steel Research, 120, 81–93. https://doi.org/10.1016/j.jcsr.2015.12.030
  • Tao, Z., Wang, Z. B., & Yu, Q. (2013). Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, 89, 121–131. https://doi.org/10.1016/j.jcsr.2013.07.001
  • Tomii, M., Yoshimura, K., & Morishita, Y. (1980). A method of improving bond strength between steel tube and concrete core cast in circular steel tubular columns. Transactions of the Japan Concrete Institute, 2, 319–326.
  • Tran, V. L., Thai, D. K., & Nguyen, D. D. (2020). Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete. Thin-Walled Structures, 151, 106720. https://doi.org/10.1016/j.tws.2020.106720
  • Virdi, K. S., & Dowling, P. J. (1975). Bond strength in concrete filled circular steel tubes. CESLIC Report. CC11. Engineering Structures Laboratories. Civil Engineering Department, Imperial College London.
  • Virdi, K. S., & Dowling, P. J. (1980). Bond strength in concrete filled steel tubes. IABSE Proceedings, 4, 125–139.
  • Xu, C., Chengkui, H., Decheng, J., & Yuancheng, S. (2009). Push-out test of pre-stressing concrete filled circular steel tube columns by means of expansive cement. Construction and Building Materials, 23(1), 491–497. https://doi.org/10.1016/j.conbuildmat.2007.10.021
  • Xue, L. H., & Cai, S. H. (1996). Bond strength at the interface of concrete-filled steel tube columns. Building Science, 12(3), 22–28.
  • Yan, J. B., Liew, J. R., Sohel, K. M. A., & Zhang, M. H. (2014). Push-out tests on J-hook connectors in steel–concrete–steel sandwich structure. Materials and Structures, 47(10), 1693–1714. https://doi.org/10.1617/s11527-013-0145-y
  • Yu, Z. W., Ding, F. X., & Cai, C. S. (2007). Experimental behavior of circular concrete-filled steel tube stub columns. Journal of Constructional Steel Research, 63(2), 165–174. https://doi.org/10.1016/j.jcsr.2006.03.009
  • Zheng, Y., Usami, T., & Ge, H. (2000). Ductility evaluation procedure for thin-walled steel structures. Journal of Structural Engineering, 126(11), 1312–1319. https://doi.org/10.1061/(asce)0733-9445(2000)126:11(1312)
  • Zhou, J., Asteris, P. G., Armaghani, D. J., & Pham, B. T. (2020). Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models. Soil Dynamics and Earthquake Engineering, 139, 106390. https://doi.org/10.1016/j.soildyn.2020.106390
  • Zou, W., Liang, J., Zhang, G., & Yang, H. (2019). Bond properties of RAC-filled square steel tubes after high temperature. Advances in Materials Science and Engineering, 2019, 1–9. https://doi.org/10.1155/2019/2413613