376
Views
0
CrossRef citations to date
0
Altmetric
Civil & Environmental Engineering

Climate and human activities impact on runoff and sediment yield in the central rift valley of Ethiopia

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2297511 | Received 28 Apr 2023, Accepted 14 Dec 2023, Published online: 16 Jan 2024

References

  • Abbaspour, K., Vejdani, M., & Haghighat, S. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. In MODSIM 2007 International Congress on Modelling and Simulation, Modelling and Simulation Society of Australia and New Zealand (pp. 1596–1602).
  • Ahmed, N., Wang, G., Lü, H., Booij, M. J., Marhaento, H., Prodhan, F. A., Ali, S., & Ali Imran, M. (2022). Attribution of changes in streamflow to climate change and land cover change in Yangtze River source region, China. Water, 14, 259. https://doi.org/10.3390/w14020259.
  • Aickin, M. (1990). Maximum likelihood estimation of agreement in the constant predictive probability model, and its relation to Cohen’s kappa. Biometrics, 46(2), 293–302. https://doi.org/10.2307/2531434
  • Alemayehu, T., Ayenew, T., & Kebede, S. (2006). Hydrogeochemical and lake level changes in the Ethiopian rift. Journal of Hydrology, 316(1–4), 290–300. https://doi.org/10.1016/j.jhydrol.2005.04.024
  • Alexandersson, H. (1984). A homogeneity test based on ratios and applied to precipitation series. Journal of Climatology, 6(6), 661–675. https://doi.org/10.1002/joc.3370060607
  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harme, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.
  • Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrological modeling and assessment, Part 1: Model development. JAWRA Journal of the American Water Resources Association, 34(1), 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  • Arragaw, A., & Bewket, W. (2017). Local spatiotemporal variability and trends in rainfall and temperature in the central highlands of Ethiopia. Geografiska Annaler: Series A, Physical Geography, 99(2), 85–101. https://doi.org/10.1080/04353676.2017.1289460
  • Ayalew, A. D., Wagner, P. D., Sahlu, D., & Fohrer, N. (2022). Land use change and climate dynamics in the Rift Valley Lake Basin, Ethiopia. Environmental Monitoring and Assessment, 194(10), 791. https://doi.org/10.1007/s10661-022-10393-1
  • Bagnold, R. (1977). Bed load transport by natural rivers. Water Resources Research, 13(2), 303–312. https://doi.org/10.1029/WR013i002p00303
  • Bambrick, H., Moncada, S., & Briguglio, M. (2015). Climate change and health vulnerability in informal urban settlements in the Ethiopian Rift Valley. Environmental Research Letters, 10(5), 054014. https://doi.org/10.1088/1748-9326/10/5/054014
  • Belete, M. D., Diekkrüger, B., & Roehrig, J. (2015). Characterization of water level variability of the main Ethiopian Rift Valley lakes. Hydrology, 3(1), 1–14. https://doi.org/10.3390/hydrology3010001
  • Belihu, M., Tekleab, S., Abate, B., & Bewket, W. (2020). Hydrologic response to land use land cover change in the Upper Gidabo Watershed, Rift Valley Lakes Basin, Ethiopia. HydroResearch, 3, 85–94. https://doi.org/10.1016/j.hydres.2020.07.001
  • Brennan, R. L., & Prediger, D. J. (1981). Coefficient kappa: Some uses, misuses, and alternatives. Educational and Psychological Measurement, 41(3), 687–699. https://doi.org/10.1177/001316448104100307
  • Chawla, I., & Mujumdar, P. P. (2015). Isolating the impacts of land use and climate change on streamflow. Hydrology and Earth System Sciences, 19(8), 3633–3651. https://doi.org/10.5194/hess-19-3633-2015
  • Cohen, J. (1960). A coefficient of agreement of nominal scales. Educational and Psychological Measurement, 20(1), 37–46. https://doi.org/10.1177/001316446002000104
  • Dai, Y., Lu, F., Ruan, B., Song, X., Du, Y., & Xu, Y. (2023). Decomposition of contribution to runoff changes and spatial differences of major tributaries in the middle reaches of the Yellow River based on the Budyko framework. Hydrology Research, 54(4), 435–450. https://doi.org/10.2166/nh.2023.061
  • Daniel, H., & Abate, B. (2022). Effect of climate change on streamflow in the Gelana watershed, Rift Valley Basin, Ethiopia. Journal of Water and Climate Change, 13(5), 2205–2232. https://doi.org/10.2166/wcc.2022.059
  • Desta, H., & Lemma, B. (2017). SWAT-based hydrological assessment and characterization of Lake Ziway sub-watersheds, Ethiopia. Journal of Hydrology: Regional Studies, 13, 122–137. https://doi.org/10.1016/j.ejrh.2017.08.002
  • Elias, E., Seifu, W., Tesfaye, B., & Girmay, W. (2019). Impact of land use/cover changes on the lake ecosystem of Ethiopia central rift valley. Cogent Food & Agriculture, 5(1), 1595876. https://doi.org/10.1080/23311932.2019.1595876
  • Foody, G. M. (1992). On the compensation for chance agreement in image classification accuracy assessment. Photogrammetric Engineering and Remote Sensing, 58, 1459–1460.
  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4
  • Gao, P., Mu, X. M., Wang, F., & Li, R. (2011). Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrology and Earth System Sciences, 15(1), 1–10. https://doi.org/10.5194/hess-15-1-2011
  • Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2019). Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. The Science of the Total Environment, 619–620, 1394–1408. https://doi.org/10.1016/j.scitotenv.2017.11.191
  • Gebrechorkos, S. H., Hülsmann, S., & Bernhofer, C. (2019). Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Scientific Reports, 9(1), 11376. https://doi.org/10.1038/s41598-019-47933-8
  • Gedefaw, M., Yan, D., Wang, H., Qin, T., Girma, A., Abiyu, A., & Batsuren, D. (2018). Innovative trend analysis of annual and seasonal rainfall variability in Amhara Regional State, Ethiopia. Atmosphere, 9(9), 326. https://doi.org/10.3390/atmos9090326
  • Gessesse, A. A., Melesse, A. M., Abera, F. F., & Abiy, A. Z. (2019). Modeling hydrological responses to land use dynamics, Choke, Ethiopia. Water Conservation Science and Engineering, 4(4), 201–212. https://doi.org/10.1007/s41101-019-00076-3
  • Gessesse, B., Bewket, W., & Bräuning, A. (2015). Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation & Development, 26(7), 711–724. https://doi.org/10.1002/ldr.2276
  • Girma, A., Qin, T., Hao, W., Yan, D., Gedefaw, M., Abiyu, A., & Dorjsuren, B. (2020). Study on recent trends of climate variability using innovative trend analysis: The case of the Upper Huai River Basin. Polish Journal of Environmental Studies, 29(3), 2199–2210. https://doi.org/10.15244/pjoes/103448
  • Godebo, T. R., Jeuland, M. A., Paul, C. J., Belachew, D. L., & McCornick, P. G. (2021). Water quality threats, perceptions of climate change and behavioral responses among farmers in the Ethiopian Rift Valley. Climate, 9(6), 92. https://doi.org/10.3390/cli9060092
  • Guo, J., Su, X., Singh, V. P., & Jin, J. (2016). Impacts of climate and land use/cover change on streamflow using SWAT and a separation method for the Xiying River Basin in northwestern China. Water, 8(5), 192. https://doi.org/10.3390/w8050192
  • Guo, W., Hong, F., Yang, H., Huang, L., Ma, Y., Zhou, H., & Wang, H. (2022). Quantitative evaluation of runoff variation and its driving forces based on multi-scale separation framework. Journal of Hydrology: Regional Studies, 43, 101183. https://doi.org/10.1016/j.ejrh.2022.101183
  • Guo, W., Sang, Y., Hu, J., Wang, W., & Wang, H. (2023). Characteristics and attribution analysis of runoff and sediment evolution in the Wei River mainstream, China. Journal of Water and Climate Change, 14(7), 2432–2447. https://doi.org/10.2166/wcc.2023.114
  • Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modeling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003
  • Hargreaves, G. H., & Samni, Z. A. (1985). Reference crop evapotranspiration from temperature. Transactions-American Society of Agricultural Engineers, 1, 96–99.
  • Huang, S. Z., Liu, D. F., Huang, Q., & Chen, Y. T. (2016). Contributions of climate variability and human activities to the variation of runoff in the Wei River Basin, China. Hydrological Sciences Journal, 61(6), 1026–1039. https://doi.org/10.1080/02626667.2014.959955
  • Idrissou, M., Diekkrüger, B., Tischbein, B., Op de Hipt, F., Näschen, K., Poméon, T., Yira, Y., & Ibrahim, B. (2022). Modeling the impact of climate and land use/land cover change on water availability in an inland valley catchment in Burkina Faso. Hydrology, 9(1), 12. https://doi.org/10.3390/hydrology9010012
  • Karlsson, I. B., Sonnenborg, T. O., Refsgaard, J. C., Trolle, D., Børgesen, C. D., Olesen, J. E., Jeppesen, E., & Jensen, K. H. (2016). Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. Journal of Hydrology. 535, 301–317. https://doi.org/10.1016/j.jhydrol.2016.01.069
  • Kumar, M., Denis, D. M., Kundu, A., Sing, S. K., Joshi, N., & Suryavanshi, S. (2022). Understanding land use/land cover and climate change impacts on hydrological components of Usri watershed, India. Applied Water Science, 12(3), 1–14. https://doi.org/10.1007/s13201-021-01547-6
  • Li, J., Wu, W., Ye, X., Jiang, H., Gan, R., Wu, H., He, J., & Jiang, Y. (2019). Innovative trend analysis of main agriculture natural hazards in China during 1989–2014. Natural Hazards, 95(3), 677–720. https://doi.org/10.1007/s11069-018-3514-6
  • Liu, C., Frazier, P., & Kumar, L. (2007). Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4), 606–616. https://doi.org/10.1016/j.rse.2006.10.010
  • Liu, Y., Wu, G., & Zhao, X. (2013). Recent declines in China’s largest freshwater lake: Trend or regime shift? Environmental Research Letters, 8(1), 014010. https://doi.org/10.1088/1748-9326/8/1/014010
  • Luan, J. K., Zhang, Y. Q., Ma, N., Tian, J., Li, X. J., & Liu, D. F. (2021). Evaluating the uncertainty of eight approaches for separating the impacts of climate change and human activities on streamflow. Journal of Hydrology, 601, 126605. https://doi.org/10.1016/j.JRydrol.2021.126605
  • Ma, X., Xu, J., Luo, Y., Aggarwal, S. P., & Li, J. (2009). Response of hydrological processes to land-cover and climate changes in Kejie watershed, southwest China. Hydrological Processes, 23(8), 1179–1191. https://doi.org/10.1002/hyp.7233
  • Mekonnen, D. F., Duan, Z., Rientjes, T., & Disse, M. (2018). Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the upper Blue Nile River basin’s streamflow. Hydrology and Earth System Sciences, 22(12), 6187–6207. https://doi.org/10.5194/hess-22-6187-2018
  • Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE, 58(6), 1763–1785.
  • Nash, E., & Sutcliffe, V. (1970). River flow forecasting through conceptual models. Part I—A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Neitsch, S. L., Amold, J. G., Kiniry, J. R., Srinivasan, R., & Williams, J. R. (2011). Soil and Water Assessment Tool SWAT theoretical documentation version 2009. USDA Agricultural Research Service and Texas Water Resources Institute.
  • Omer, A., Wang, W., Basheer, A. K., & Yong, B. (2017). Integrated assessment of the impacts of climate variability and anthropogenic activities on river runoff: a case study in the Hutuo River Basin, China. Hydrology Research, 48(2), 416–430. https://doi.org/10.2166/nh.2016.229
  • Pettitt, A. N. (1979). A non-parametric approach to the change-point problem. Applied Statistics, 28(2), 126–135. https://doi.org/10.2307/2346729
  • Phuong, D. N. D., Tram, V. N. Q., Nhat, T. T., Ly, T. D., & Loi, N. K. (2020). Hydro-meteorological trend analysis using the Mann-Kendall and Innovative-Sen methodologies: A case study. International Journal of Global Warming, 20(2), 145–164. https://doi.org/10.1504/IJGW.2020.105385
  • Pirnia, A., Darabi, H., Choubin, B., Omidvar, E., Onyutha, C., & Haghighi, A. T. (2019). Contribution of climatic variability and human activities to streamflow changes in the Haraz River basin, northern Iran. Journal of Hydro-environment Research, 25, 12–24. https://doi.org/10.1016/j.jher.2019.05.001
  • Poerbandono, Julian, M. M., & Ward, P. J. (2014). Assessment of the effects of climate and land cover changes on river discharge and sediment yield, and adaptive spatial planning in the Jakarta region. Natural Hazards, 73(2), 507–530. https://doi.org/10.1007/s11069-014-1083-x
  • Pontius, R. G. Jr., & Millones, M. (2011). Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429. https://doi.org/10.1080/01431161.2011.552923
  • Qin, P., Liu, M., Du, L., Xu, H., Liu, L., & Xiao, C. (2019). Climate change impacts on runoff in the upper Yangtze river basin. Climate Change Research, 15(4), 405–415.
  • Rientjes, T. H. M., Haile, A. T., Kebede, E., Mannaerts, C. M. M., Habib, E., & Steenhuis, T. S. (2011). Changes in land cover, rainfall and stream flow in Upper Gilgel Abbay catchment, Blue Nile basin – Ethiopia. Hydrology and Earth System Sciences, 15(6), 1979–1989. https://doi.org/10.5194/hess-15-1979-2011.
  • Rodionov, S. (2004). A sequential algorithm for testing climate regime shifts. Geophysical Research Letters, 31(9), L09204. https://doi.org/10.1029/2004GL019448
  • Rodionov, S. (2015). A sequential method of detecting abrupt changes in the correlation coefficient and its application to Bering Sea climate. Climate, 3(3), 474–491. https://doi.org/10.3390/cli3030474
  • Rosenfield, G. H., & Fitzpatrick-Lins, K. (1986). A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52, 223–227.
  • Sen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17, 1042–1046.
  • Şen, Z. (2017). Innovative trend significance test and applications. Theoretical and Applied Climatology, 127(3–4), 939–947. https://doi.org/10.1007/s00704-015-1681-x
  • Shah, S. A., Jehanzaib, M., Yoo, J., Hong, S., & Kim, T. W. (2022). Investigation of the effects of climate variability, anthropogenic activities, and climate change on streamflow using multi-model ensembles. Water, 14(4), 512. https://doi.org/10.3390/w14040512
  • Shang, X., Jiang, X., Jia, R., & Wei, C. (2019). Land use and climate change effects on surface runoff variations in the Upper Heihe River Basin. Water, 11(2), 344. https://doi.org/10.3390/w11020344
  • Shawul, A. A., Chakma, S., & Melesse, A. M. (2019). The response of water balance components to land cover change based on hydrologic modeling and partial least squares regression (PLSR) analysis in the Upper Awash Basin. Journal of Hydrology: Regional Studies, 26, 100640. https://doi.org/10.1016/j.ejrh.2019.100640
  • Sime, C. H., Demissie, T. A., & Tufa, F. G. (2020). Surface runoff modeling in Ketar watershed, Ethiopia. Journal of Sedimentary Environments, 5(1), 151–162. https://doi.org/10.1007/s43217-020-00009-4
  • Story, M., & Congalton, R. G. (1986). Accuracy assessment: A user’s perspective. Photogrammetric Engineering and Remote Sensing, 52, 397–399.
  • Teklay, A., Dile, Y. T., Asfaw, D. H., Bayabil, H. K., & Sisay, K. (2021). Impacts of climate and land use change on hydrological response in Gumara watershed, Ethiopia. Ecohydrology & Hydrobiology, 21(2), 315–332. https://doi.org/10.1016/j.ecohyd.2020.12.001
  • Tian, F., Yang, Y. H., & Han, S. M. (2009). Using runoff slope-break to determine dominant factors of runoff decline in Hutuo River Basin, North China. Water Science and Technology, 60(8), 2135–2144. https://doi.org/10.2166/wst.2009.578
  • Tian, P., Liu, L., Tian, X. J., Zhao, G. J., Klik, A., Wang, R. D., Lu, X. Y., Mu, X. M., & Bai, Y. P. (2022). Sediment yields variation and response to the controlling factors in the Wei River Basin, China. CATENA, 213, 106181–106193. https://doi.org/10.1016/j.catena.2022.106181
  • Wang, S., Kang, S., Zhang, L., & Li, F. (2008). Modeling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrological Processes, 22(14), 2502–2510. https://doi.org/10.1002/hyp.6846
  • Warrens, M. J. (2015). Properties of the quantity disagreement and the allocation disagreement. International Journal of Remote Sensing, 36(5), 1439–1446. https://doi.org/10.1080/01431161.2015.1011794
  • Wu, J., Miao, C., Zhang, X., Yang, T., & Duan, Q. (2017). Detecting the quantitative hydrological response to changes in climate and human activities. The Science of the Total Environment, 586, 328–337. https://doi.org/10.1016/j.scitotenv.2017.02.010
  • Xijun, W., & Ying, D. (2019). Quantifying factors influencing runoff in mining areas using the SWAT model – A case of the Kuye River in Northern Shaanxi, China. Water Supply, 19(3), 753–761. https://doi.org/10.2166/ws.2018.119
  • Xue, L., Fan, Y., Yang, C., Chen, X., Zhang, L., Chi, Y., & Yang, G. (2017). Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Scientific Reports, 7(1), 8254. https://doi.org/10.1038/s41598-017-09215-z
  • Yao, B., & Liu, Q. (2018). Characteristics and influencing factors of sediment deposition-scour in the Sanhuhekou-Toudaoguai Reach of the upper Yellow River, China. International Journal of Sediment Research, 33(3), 303–312. https://doi.org/10.1016/j.ijsrc.2018.03.003
  • Zang, C., Liu, J., Jiang, L., & Gerten, D. (2013). Impacts of human activities and climate variability on Green and blue water flows in the Heihe River Basin in Northwest China. Hydrology and Earth System Sciences Discussions, 10(7), 9477–9504.
  • Zelalem, B., & Kumar, D. (2018). Calibration and validation of SWAT model using stream flow and sediment load for Mojo watershed, Ethiopia. Sustain. Sustainable Water Resources Management, 4(4), 937–949. https://doi.org/10.1007/s40899-017-0189-1
  • Zena, B. K., Adugna, T. D., & Fufa, F. F. (2022). Comparative analysis of long-term precipitation trends and implications in the Modjo catchment, central Ethiopia. Journal of Water and Climate Change, 13(11), 3883–3905. https://doi.org/10.2166/wcc.2022.234
  • Zhang, A., Zhang, C., Fu, G., Wang, B., Bao, Z., & Zheng, H. (2012). Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China. Water Resources Management, 26(8), 2199–2217. https://doi.org/10.1007/s11269-012-0010-8
  • Zhang, H. L., Meng, C. C., Wang, Y. J., Wang, Y., & Li, M. (2020). Comprehensive evaluation of the effects of climate change and land use and land cover change variables on runoff and sediment discharge. The Science of the Total Environment, 702(1), 134401. https://doi.org/10.1016/j.scitotenv.2019.134401
  • Zhao, G., Mu, X., Jiao, J., Gao, P., Sun, W., Li, E., Wei, Y., & Huang, J. (2018). Assessing the response of sediment load variation to climate change and human activities with 700 six different approaches. The Science of the Total Environment, 639, 773–784. https://doi.org/10.1016/j.scitotenv.2018.05.154
  • Zhao, G., Mu, X., Su, B., Tian, P., Wang, F., Zhai, J., & Xiong, M. (2012). Analysis of streamflow and sediment flux changes in the Yangtze River basin. Water International, 37(5), 537–551. https://doi.org/10.1080/02508060.2012.681442
  • Zhao, Y., Zou, X., Gao, J., Xu, X., Wang, C., Tang, D., Wang, T., & Wu, X. (2015). Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: A case study of the Yangtze River. China. The Science of the Total Environment, 536, 803–812. https://doi.org/10.1016/j.scitotenv.2015.07.119
  • Zuo, D., Xu, Z., Yao, W., Jin, S., Xiao, P., & Ran, D. (2016). Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. The Science of the Total Environment, 544, 238–250. https://doi.org/10.1016/j.scitotenv.2015.11.060