632
Views
0
CrossRef citations to date
0
Altmetric
Production & Manufacturing

A novel Fibonacci-inspired enhancement of the Bees Algorithm: application to robotic disassembly sequence planning

ORCID Icon & ORCID Icon
Article: 2298764 | Received 26 Aug 2023, Accepted 17 Dec 2023, Published online: 18 Jan 2024

References

  • Abdulhameed, S., & Rashid, T. A. (2022). Child Drawing Development Optimization Algorithm based on child’s cognitive development. Arabian Journal for Science and Engineering, 47(2), 1337–1351. https://doi.org/10.1007/s13369-021-05928-6
  • Aras, N., & Aksen, D. (2008). Locating collection centers for distance-and incentive-dependent returns. International Journal of Production Economics, 111(2), 316–333. https://doi.org/10.1016/j.ijpe.2007.01.015
  • Belhadj, I., Aicha, M., & Aifaoui, N. (2022). Product disassembly planning and task allocation based on human and robot collaboration. International Journal on Interactive Design and Manufacturing (IJIDeM), 16(2), 803–819. https://doi.org/10.1007/s12008-022-00908-y
  • Castellani, M., & Pham, D. T. (2023). The Bees Algorithm—A gentle introduction. In D. T. Pham & Natalia Hartono (Eds.), Intelligent production and manufacturing optimisation—The Bees Algorithm approach (pp. 3–21). Springer International Publishing.
  • Caterino, M., Fera, M., Macchiaroli, R., & Pham, D. (2023). Task optimisation for a modern cloud remanufacturing system using the Bees Algorithm. In D. T. Pham & Natalia Hartono (Eds.), Intelligent production and manufacturing optimisation—The Bees Algorithm approach (pp. 365–382). Springer.
  • Caterino, M., Fera, M., Macchiaroli, R., & Pham, D. T. (2022). Cloud remanufacturing: Remanufacturing enhanced through cloud technologies. Journal of Manufacturing Systems, 64, 133–148. https://doi.org/10.1016/j.jmsy.2022.06.003
  • Cevikcan, E., Aslan, D., & Yeni, F. B. (2020). Disassembly line design with multi-manned workstations: A novel heuristic optimisation approach. International Journal of Production Research, 58(3), 649–670. https://doi.org/10.1080/00207543.2019.1587190
  • Chen, B., Xu, W., Liu, J., Ji, Z., & Zhou, Z. (2020). Robotic disassembly sequence planning considering robotic collision avoidance trajectory in remanufacturing [Paper presentation]. 2020 IEEE 18th International Conference on Industrial Informatics (INDIN) (Vol. 1, pp. 494–501). Warwick, UK. https://doi.org/10.1109/INDIN45582.2020.9442129
  • Chen, Q., Yao, B., & Pham, D. T. (2020). Sequence-dependent robotic disassembly line balancing problem considering disassembly path [Paper presentation]. International Manufacturing Science and Engineering Conference (Vol. 84263, p. V002T07A019). Virtual, Online. https://doi.org/10.1115/MSEC2020-8268
  • Costa, C. M., Veiga, G., Sousa, A., Rocha, L., Oliveira, E., Cardoso, H. L., & Thomas, U. (2018). Automatic generation of disassembly sequences and exploded views from solidworks symbolic geometric relationships. 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (pp. 211–218). Torres Vedras, Portugal.
  • Cui, J., Yang, C., Zhang, J., Tian, S., Liu, J., & Xu, W. (2023). Robotic disassembly sequence planning considering parts failure features. iET Collaborative Intelligent Manufacturing, 5(1), e12074. https://doi.org/10.1049/cim2.12074
  • Da, C., Wenchao, Z., Siqing, S., Yiqun, L., Yazhou, L., & Xianbo, K. (2018). A parameter identification algorithm for turbine-governor system in regional power grid [Paper presentation]. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2) (pp. 1–5). Beijing, China. https://doi.org/10.1109/EI2.2018.8582270
  • De la Torre Gutiérrez, H., & Pham, D. T. (2018). Identification of patterns in control charts for processes with statistically correlated noise. International Journal of Production Research, 56(4), 1504–1520. https://doi.org/10.1080/00207543.2017.1360530
  • Etminaniesfahani, A., Ghanbarzadeh, A., & Marashi, Z. (2018). Fibonacci Indicator Algorithm: A novel tool for complex optimization problems. Engineering Applications of Artificial Intelligence, 74, 1–9. https://doi.org/10.1016/j.engappai.2018.04.012
  • Frizziero, L., Donnici, G., Santi, G. M., Leon-Cardenas, C., Ferretti, P., Pascucci, G., & Liverani, A. (2022). Disassembly sequence planning validated through augmented reality for a speed reducer. Cogent Engineering, 9(1), 1–31. https://doi.org/10.1080/23311916.2022.2061321
  • Gao, K.-Z., He, Z., Huang, Y., Duan, P.-Y., & Suganthan, P. N. (2020). A survey on meta-heuristics for solving disassembly line balancing, planning and scheduling problems in remanufacturing. Swarm and Evolutionary Computation, 57, 100719. https://doi.org/10.1016/j.swevo.2020.100719
  • Grabcad Community. (2020). Gear pump 10 l/min. Retrieved July 22, 2020, from https://grabcad.com/library/gear-pump-10l-min-1
  • Gudla, P. K., & Ganguli, R. (2005). An automated hybrid genetic-conjugate gradient algorithm for multimodal optimization problems. Applied Mathematics and Computation, 167(2), 1457–1474. https://doi.org/10.1016/j.amc.2004.08.026
  • Guo, J., Pu, Z., Du, B., & Li, Y. (2022). Multi-objective optimisation of stochastic hybrid production line balancing including assembly and disassembly tasks. International Journal of Production Research, 60(9), 2884–2900. https://doi.org/10.1080/00207543.2021.1905902
  • Hartono, N. (2023). Intelligent robotic disassembly optimisation for sustainability using the Bees Algorithm University of Birmingham. http://etheses.bham.ac.uk/id/eprint/14384
  • Hartono, N., Ismail, A. H., Zeybek, S., Caterino, M., Jiang, K., & Sahin, M. (2023). Parameter tuning for Combinatorial Bees Algorithm in travelling salesman problems [Paper presentation]. AIP Conference Proceedings, Vol. 2485, no. 1. Bandung, Indonesia.
  • Hartono, N., Javier Ramírez, F., & Pham, D. T. (2023). Optimisation of robotic disassembly sequence plans for sustainability using the multi-objective Bees Algorithm. In Intelligent production and manufacturing optimisation—The Bees Algorithm approach (pp. 337–363). Springer International Publishing.
  • Hartono, N., Ramírez, F. J., & Pham, D. (2022a). Optimisation of robotic disassembly plans using the Bees Algorithm. Robotics and Computer-Integrated Manufacturing, 78, 102411. https://doi.org/10.1016/j.rcim.2022.102411
  • Hartono, N., Ramírez, F. J., & Pham, D. (2022b). A sustainability-based model for robotic disassembly sequence planning in remanufacturing using the Bees Algorithm. IFAC-PapersOnLine, 55(10), 1013–1018. https://doi.org/10.1016/j.ifacol.2022.09.509
  • Hosseinian, A. H., & Baradaran, V. (2020). P-GWO and MOFA: Two new algorithms for the MSRCPSP with the deterioration effect and financial constraints (case study of a gas treating company). Applied Intelligence, 50(7), 2151–2176. https://doi.org/10.1007/s10489-020-01663-x
  • Hussein, W. A., Sahran, S., & Sheikh Abdullah, S. N. H. (2017). The variants of the Bees Algorithm (BA): A survey. Artificial Intelligence Review, 47(1), 67–121. https://doi.org/10.1007/s10462-016-9476-8
  • Ismail, A. H. (2021). Enhancing the Bees Algorithm using the traplining metaphor [Unpublished doctoral dissertation]. University of Birmingham.
  • Ismail, A. H., Hartono, N., Zeybek, S., & Pham, D. T. (2020). Using the Bees Algorithm to solve combinatorial optimisation problems for TSPLIB. IOP Conference Series: Materials Science and Engineering, 847(1), 012027. https://doi.org/10.1088/1757-899X/847/1/012027
  • Ismail, A. H., & Pham, D. T. (2023). Bees traplining metaphors for the vehicle routing problem using a decomposition approach. In D. T. Pham & Natalia Hartono (Eds.), Intelligent production and manufacturing optimisation—The Bees Algorithm approach (pp. 261–287). Springer International Publishing.
  • Kerin, M., Hartono, N., & Pham, D. (2023). Optimising remanufacturing decision-making using the Bees Algorithm in product digital twins. Scientific Reports, 13(1), 701. https://doi.org/10.1038/s41598-023-27631-2
  • Khosla, T., & Verma, O. P. (2022). An efficient particle swarm optimization with fusion of figurate opposition-based learning and Grey Wolf Optimizer [Paper presentation]. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (pp. 208–213). Greater Noida, India. https://doi.org/10.1109/ICCCIS56430.2022.10037666
  • Koshy, T. (2017). Fibonacci and Lucas numbers with applications, one. Wiley Online Library.
  • Laili, Y., Li, X., Wang, Y., Ren, L., & Wang, X. (2021). Robotic disassembly sequence planning with backup actions. IEEE Transactions on Automation Science and Engineering, 19(3), 2095–2107.
  • Laili, Y., Tao, F., Pham, D. T., Wang, Y., & Zhang, L. (2019). Robotic disassembly re planning using a two-pointer detection strategy and a super-fast Bees Algorithm. Robotics and Computer-Integrated Manufacturing, 59, 130–142. https://doi.org/10.1016/j.rcim.2019.04.003
  • Laili, Y., Wang, Y., Fang, Y., & Pham, D. T. (2022a). Evolutionary optimisation for robotic disassembly sequence planning and line balancing. In Optimisation of Robotic Disassembly for Remanufacturing (pp. 85–110). Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-81799-2_7
  • Laili, Y., Wang, Y., Fang, Y., & Pham, D. T. (2022b). Robotic disassembly sequence re-planning. In D. T. Pham (Ed.), Optimisation of robotic disassembly for remanufacturing (pp. 131–142). Springer International Publishing.
  • Laili, Y., Wang, Y., Fang, Y., & Pham, D. T. (2022c). Solutions for robotic disassembly sequence planning with backup actions. In Optimisation of Robotic Disassembly for Remanufacturing (pp. 111–130). Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-81799-2_8
  • Lambert, A. (1997). Optimal disassembly of complex products. International Journal of Production Research, 35(9), 2509–2524. https://doi.org/10.1080/002075497194633
  • Liu, J., Liu, Q., Zhou, Z., Pham, D. T., Xu, W., & Fang, Y. (2023). Collaborative optimisation of robotic disassembly planning problems using the Bees Algorithm. In D. T. Pham & Natalia Hartono (Eds.), Intelligent production and manufacturing optimisation—The Bees Algorithm approach (pp. 305–335). Springer International Publishing.
  • Liu, J., & Wang, S. (2017). Balancing disassembly line in product recovery to promote the coordinated development of economy and environment. Sustainability, 9(2), 309. https://doi.org/10.3390/su9020309
  • Liu, J., Xu, Z., Xiong, H., Lin, Q., Xu, W., & Zhou, Z. (2023). Digital twin-driven robotic disassembly sequence dynamic planning under uncertain missing condition. IEEE Transactions on Industrial Informatics, 19(12), 11846–11855. https://doi.org/10.1109/TII.2023.3253187
  • Liu, J., Zhou, Z., Pham, D. T., Xu, W., Ji, C., & Liu, Q. (2020). Collaborative optimization of robotic disassembly sequence planning and robotic disassembly line balancing problem using improved discrete Bees Algorithm in remanufacturing. Robotics and Computer-Integrated Manufacturing, 61, 101829. https://doi.org/10.1016/j.rcim.2019.101829
  • Liu, J., Zhou, Z., Pham, D. T., Xu, W., Ji, C., & Liu, Q. (2018a). Robotic disassembly sequence planning using enhanced discrete Bees Algorithm in remanufacturing. International Journal of Production Research, 56(9), 3134–3151. https://doi.org/10.1080/00207543.2017.1412527
  • Liu, J., Zhou, Z., Pham, D. T., Xu, W., Yan, J., Liu, A., Ji, C., & Liu, Q. (2018b). An improved multi-objective discrete Bees Algorithm for robotic disassembly line balancing problem in remanufacturing. The International Journal of Advanced Manufacturing Technology, 97(9–12), 3937–3962. https://doi.org/10.1007/s00170-018-2183-7
  • Ma, Y.-S., Jun, H.-B., Kim, H.-W., & Lee, D.-H. (2011). Disassembly process planning algorithms for end-of-life product recovery and environmentally conscious disposal. International Journal of Production Research, 49(23), 7007–7027. https://doi.org/10.1080/00207543.2010.495089
  • McGovern, S., & Gupta, S. M. (2011). The disassembly line: Balancing and modeling. McGraw-Hill.
  • Ming, H., Liu, Q., & Pham, D. T. (2019). Multi-robotic disassembly line balancing with uncertain processing time. Procedia CIRP, 83, 71–76.https://doi.org/10.1016/j.procir.2019.02.140
  • Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2020). A novel meta-heuristic optimization method based on golden ratio in nature. Soft Computing, 24(2), 1117–1151. https://doi.org/10.1007/s00500-019-03949-w
  • Omotehinwa, T., & Ramon, S. (2013). Fibonacci numbers and golden ratio in mathematics and science. International Journal of Computer and Information Technology, 2(4), 630–638.
  • Pham, D. T., & Castellani, M. (2009). The Bees Algorithm: Modelling foraging behaviour to solve continuous optimization problems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(12), 2919–2938.
  • Pham, D. T., & Castellani, M. (2015). A comparative study of the Bees Algorithm as a tool for function optimisation. Cogent Engineering, 2(1), 1091540. https://doi.org/10.1080/23311916.2015.1091540
  • Pham, D. T., & Darwish, A. H. (2008). Fuzzy selection of local search sites in the Bees Algorithm. In Proceedings of the 4th International Virtual Conference on Intelligent Production Machines and Systems (IPROMS 2008) (pp. 1–14). Scotland: Whittles Publishing.
  • Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2005). The Bees Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK.
  • Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The Bees Algorithm—A novel tool for complex optimisation problems. In D. T. Pham, E. E. Eldukhri & A. J.Soroka (Eds.) Intelligent production machines and systems (pp. 454–459). Elsevier.
  • Ramírez, F. J., Aledo, J. A., Gamez, J. A., & Pham, D. T. (2020). Economic modelling of robotic disassembly in end-of-life product recovery for remanufacturing. Computers & Industrial Engineering, 142, 106339. https://doi.org/10.1016/j.cie.2020.106339
  • Scott, T. C., & Marketos, P. (2014). On the origin of the Fibonacci sequence. MacTutor History of Mathematics, 23, 1–46.
  • Sha, L., & Pan, Z. (2018). FSQGA based 3D complexity wellbore trajectory optimization. Oil & Gas Sciences and Technology – Revue d’IFP Energies Nouvelles, 73, 79. https://doi.org/10.2516/ogst/2018008
  • Shackleton, K., Balfour, N. J., Toufailia, H. A., James, E., & Ratnieks, F. L. W. (2023). Honey bee waggle dance facilitate shorter foraging distances and increased foraging aggregation. Animal Behaviour, 198, 11–19. https://doi.org/10.1016/j.anbehav.2023.01.009
  • Tofallis, C. (2014). Add or multiply? A tutorial on ranking and choosing with multiple criteria. INFORMS Transactions on Education, 14(3), 109–119. https://doi.org/10.1287/ited.2013.0124
  • Tran-Ngoc, H., Le-Xuan, T., Khatir, S., De Roeck, G., Bui-Tien, T., & Abdel Wahab, M. (2023). A promising approach using Fibonacci sequence-based optimization algorithms and advanced computing. Scientific Reports, 13(1), 3405. https://doi.org/10.1038/s41598-023-28367-9
  • Visscher, P. K., & Seeley, T. D. (1982). Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology, 63(6), 1790–1801. https://doi.org/10.2307/1940121
  • Wei, L., Zhang, Z., & Lim, A. (2014). An adaptive variable neighborhood search for a heterogeneous fleet vehicle routing problem with three-dimensional loading constraints. IEEE Computational Intelligence Magazine, 9(4), 18–30. https://doi.org/10.1109/MCI.2014.2350933
  • Yang, C., Xu, W., Liu, J., Yao, B., & Hu, Y. (2022). Robotic disassembly sequence planning considering robotic movement state based on deep reinforcement learning [Paper presentation]. 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 183–189). Hangzhou, China. https://doi.org/10.1109/CSCWD54268.2022.9776113
  • Ye, F., Perrett, J., Zhang, L., Laili, Y., & Wang, Y. (2022). A self-evolving system for robotic disassembly sequence planning under uncertain interference conditions. Robotics and Computer-Integrated Manufacturing, 78, 102392. https://doi.org/10.1016/j.rcim.2022.102392
  • Yeh, W.-C. (2006). An efficient memetic algorithm for the multi-stage supply chain network problem. The International Journal of Advanced Manufacturing Technology, 29(7–8), 803–813. https://doi.org/10.1007/s00170-005-2556-6
  • Yin, T., Zhang, Z., Zhang, Y., Wu, T., & Liang, W. (2022). Mixed-integer programming model and hybrid driving algorithm for multi-product partial disassembly line balancing problem with multi-robot workstations. Robotics and Computer-Integrated Manufacturing, 73, 102251.
  • Zachariadis, E. E., & Kiranoudis, C. T. (2010). An open vehicle routing problem metaheuristic for examining wide solution neighborhoods. Computers & Operations Research, 37(4), 712–723. https://doi.org/10.1016/j.cor.2009.06.021
  • Zeybek, S. (2023). Prediction of the remaining useful life of engines for remanufacturing using a semi-supervised deep learning model trained by the Bees Algorithm. In D. T. Pham & Natalia Hartono (Eds.), Intelligent production and manufacturing optimisation—The Bees Algorithm approach (pp. 383–397). Springer.
  • Zeybek, S., Ismail, A. H., Hartono, N., Caterino, M., & Jiang, K. (2021). An improved vantage point Bees Algorithm to solve combinatorial optimization problems from TSPLIB. Macromolecular Symposia, 396(1), 2000299. https://doi.org/10.1002/masy.202000299
  • Zeybek, S., & Koç, E. (2015). The vantage point Bees Algorithm. In 2015 7th International Joint Conference on Computational Intelligence (IJCCI) (Vol.1, pp. 340–345). Lisbon, Portugal.
  • Zhang, Z., Wei, L., & Lim, A. (2015). An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints. Transportation Research Part B: Methodological, 82, 20–35. https://doi.org/10.1016/j.trb.2015.10.001
  • Zhao, Q., Tao, R., Li, J., & Mu, Y. (2020). An improved wolf pack algorithm [Paper presentation]. 2020 Chinese Control and Decision Conference (CCDC) (pp. 626–633). Hefei, China. https://doi.org/10.1109/CCDC49329.2020.9164486