202
Views
0
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Effects of fuel preheat temperature on soot formation in methyl linolenate co-flow diffusion flames

ORCID Icon &
Article: 2300552 | Received 19 Sep 2023, Accepted 22 Dec 2023, Published online: 21 Jan 2024

References

  • Bai, S., Tang, J., Wang, G., & Li, G. (2016). Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine. Applied Thermal Engineering, 100, 1292–1298. https://doi.org/10.1016/j.applthermaleng.2016.02.055
  • Battin-Leclerc, F. (2008). Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates. Progress in Energy and Combustion Science, 34(4), 440–498. https://doi.org/10.1016/j.pecs.2007.10.002
  • Celnik, M. S., Sander, M., Raj, A., West, R. H., & Kraft, M. (2009). Modelling soot formation in a premixed flame using an aromatic-site soot model and an improved oxidation rate. Proceedings of the Combustion Institute, 32(1), 639–646. https://doi.org/10.1016/j.proci.2008.06.062
  • Chu, C., Amidpour, Y., Eaves, N. A., & Thomson, M. J. (2021). An experimental and numerical study of the effects of reactant temperatures on soot formation in a co flow diffusion ethylene flame. Combustion and Flame, 233, 111574. https://doi.org/10.1016/j.combustflame.2021.111574
  • Chun, C., Tran, M., Nurmukan, D., Thong, B., Tung, C., & Scribano, G. (2022). Investigation of flame structure and stabilisation characteristics of palm methyl esters diffusion flames. Fuel, 313, 123034. https://doi.org/10.1016/j.fuel.2021.123034
  • Chun, L. O. U., Chen, C., Yipeng, S. U. N., & Huaichun, Z. (2010). Review of soot measurement in hydrocarbon-air flames. Science China Technological Sciences, 53(8), 2129–2141. https://doi.org/10.1007/s11431-010-3212-4
  • Frenklach, M., & Wang, H. A. I. (1990). Detailed modelling of soot particle nucleation and growth. Symposium of Combustion, 23(1), 1559–1566. https://doi.org/10.1016/S0082-0784(06)80426-1
  • Frenklach, M., & Wang, H. (1994). Detailed mechanism and modeling of soot particle formation. Soot formation in combustion: mechanisms and models. Springer.
  • Gu, M., Chu, H., & Liu, F. (2016). Effects of simultaneous hydrogen enrichment and carbon dioxide dilution of fuel on soot formation in an axisymmetric coflow laminar ethylene/air diffusion flame. Combustion and Flame, 166, 216–228. https://doi.org/10.1016/j.combustflame.2016.01.023
  • Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143
  • Johnson, T., & Joshi, A. (2018). Review of Vehicle Engine Efficiency and Emissions. SAE International Journal of Engines, 11(6), 1307–1330. https://doi.org/10.4271/2018-01-0329
  • Karabektas, M., Ergen, G., & Hosoz, M. (2008). The effects of preheated cottonseed oil methyl ester on the performance and exhaust emissions of a diesel engine. Applied Thermal Engineering, 28(17-18), 2136–2143. https://doi.org/10.1016/j.applthermaleng.2007.12.016
  • Kennedy, I. M. (1997). Models of soot formation and oxidation. Progress in Energy and Combustion Science, 23(2), 95–132. https://doi.org/10.1016/S0360-1285(97)00007-5
  • Khosousi, A., Liu, F., Dworkin, S. B., Eaves, N. A., Thomson, M. J., He, X., Dai, Y., Gao, Y., Liu, F., Shuai, S., & Wang, J. (2015). Experimental and numerical study of soot formation in laminar coflow diffusion flames of gasoline/ethanol blends. Combustion and Flame, 162(10), 3925–3933. https://doi.org/10.1016/j.combustflame.2015.07.029
  • Kodate, S. V., Satyanarayana Raju, P., Yadav, A. K., & Kumar, G. N. (2021). Investigation of preheated Dhupa seed oil biodiesel as an alternative fuel on the performance, emission, and combustion in a CI engine. Energy, 231, 120874. https://doi.org/10.1016/j.energy.2021.120874
  • Konsur, B., Megaridis, C. M., & Griffin, D. W. (1999). Fuel preheat effects on soot-field structure in laminar gas jet diffusion flames burning in 0-g and 1-g. Combustion and Flame, 116(3), 334–347. https://doi.org/10.1016/S0010-2180(97)00297-6
  • Lignell, D. O., Chen, J. H., Smith, P. J., Lu, T., & Law, C. K. (2007). The effect of flame structure on soot formation and transport in turbulent nonpremixed flames using direct numerical simulation. Combustion and Flame, 151(1-2), 2–28. https://doi.org/10.1016/j.combustflame.2007.05.013
  • Lou, C., Chen, X., Yan, W., Tian, Y., & Kumfer, B. M. (2018). Effect of stoichiometric mixture fraction on soot fraction and emission spectra with application to. Proceedings of the Combustion Institute, 1–8. https://doi.org/10.1016/j.proci.2018.06.166
  • Mahmoud, N. M., Yan, F., & Wang, Y. (2019). Effects of fuel inlet boundary condition on aromatic species formation in coflow diffusion flames. Journal of the Energy Institute, 92(2), 288–297. https://doi.org/10.1016/j.joei.2018.01.007
  • Mao, G., Shi, K., Zhang, C., Chen, S., & Wang, P. (2020). Experimental research on effects of biodiesel fuel combustion flame temperature on NOX formation based on endoscope high-speed photography. Journal of the Energy Institute, 93(4), 1399–1410. https://doi.org/10.1016/j.joei.2020.01.002
  • Maricq, M. M. (2007). Coagulation dynamics of fractal-like soot aggregates. Journal of Aerosol Science, 38(2), 141–156. https://doi.org/10.1016/j.jaerosci.2006.11.004
  • Mazzei, L., Puggelli, S., Bertini, D., Pampaloni, D., & Andreini, A. (2017). The soot Modelling production and thermal radiation for turbulent diffusion flames diffusion flames. Energy Procedia, 126, 826–833. https://doi.org/10.1016/j.egypro.2017.08.266
  • Patki, A., Li, X., Chen, D., Lou, H., Richmond, P., Damodara, V., Liu, L., Rasel, K., Alphones, A., & Zhou, J. (2014). On numerical simulation of black carbon (soot) emissions from non-premixed flames. Journal of Geoscience and Environment Protection, 2(4), 15–24. https://doi.org/10.4236/gep.2014.24003
  • Ranzi, E., Frassoldati, A., Stagni, A., Pelucchi, M., Cuoci, A., & Faravelli, T. (2014)., Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. International Journal of Chemical Kinetics, 46(9), 512–542.
  • Sarnacki, B. G., & Chelliah, H. K. (2018). Sooting limits of non-premixed counterflow ethylene/oxygen/inert flames using LII: Effects of flow strain rate and pressure (up to 30 atm. Combustion and Flame, 195, 267–281. https://doi.org/10.1016/j.combustflame.2018.03.029
  • Sato, H., Tree, D. R., Hodges, J. T., & Foster, D. E. (1991). A study on the effect of temperature on soot formation in a jet stirred combustor. Symposium on Combustion, 23(1), 1469–1475. https://doi.org/10.1016/S0082-0784(06)80415-7
  • Shkiro, V. M., Nersisyan, G. A., & Borovinskaya, I. P. (1978). Principles of combustion of tantalum-carbon mixtures. Combustion, Explosion, and Shock Waves, 14(4), 455–460. https://doi.org/10.1007/BF00742950
  • Smooke, M. D., Lin, P., Lam, J. K., & Long, M. B. (1991). Computational and experimental study of a laminar axisymmetric methane-air diffusion flame. In Symposium on Combustion 23, 575–582). Elsevier. https://doi.org/10.1016/S0082-0784(06)80305-X
  • Sun, Z., Dally, B., Nathan, G., & Alwahabi, Z. (2017). Effects of hydrogen and nitrogen on soot volume fraction, primary particle diameter and temperature in laminar ethylene/air diffusion flames. Combustion and Flame, 175, 270–282. https://doi.org/10.1016/j.combustflame.2016.08.031
  • Taylor, Publisher Hongsheng Guo, Fengshan Liu, Gregory J. Smallwood & Ömer L. Gülder. (2014). The flame preheating effect on numerical modelling of soot formation in two-dimensional laminar ethylene–air diffusion flame.
  • Vinayagam, N. K., Hoang, A. T., Solomon, J. M., Subramaniam, M., Balasubramanian, D., EL-Seesy, A. I., & Nguyen, X. P. (2021). Smart control strategy for effective hydrocarbon and carbon monoxide emission reduction on a conventional diesel engine using the pooled impact of pre-and post-combustion techniques. Journal of Cleaner Production, 306, 127310. https://doi.org/10.1016/j.jclepro.2021.127310
  • Westbrook, C. K., Pitz, W. J., Westmoreland, P. R., Dryer, F. L., Chaos, M., Osswald, P., Kohse-Höinghaus, K., Cool, T. A., Wang, J., Yang, B., Hansen, N., & Kasper, T. (2009). A detailed chemical kinetic reaction mechanism for oxidation of four small alkyl esters in laminar premixed flames. Proceedings of the Combustion Institute, 32(1), 221–228. https://doi.org/10.1016/j.proci.2008.06.106
  • Wu, D., Yu, H., Harvey, A., & Roskilly, A. P. (2013). Micro distributed energy system driven with preheated Croton megalocarpus oil: A performance and particulate emission study. Applied Energy, 112, 1383–1392. https://doi.org/10.1016/j.apenergy.2013.04.071