310
Views
1
CrossRef citations to date
0
Altmetric
Mechanical Engineering

Investigation of MHD micropolar flow between a stationary and a rotating disc: Keller-box solution

, ORCID Icon &
Article: 2301151 | Received 12 Oct 2023, Accepted 28 Dec 2023, Published online: 18 Jan 2024

References

  • Alahmadi, R. A., Raza, J., Mushtaq, T., Abdelmohsen, S. A. M., R. Gorji, M., & Hassan, A. M. (2023). Optimization of MHD flow of radiative micropolar nanofluid in a channel by RSM: Sensitivity analysis. Mathematics, 11(4), 939. https://doi.org/10.3390/math11040939
  • Anwar, M., & Guram, G. S. (1980). Numerical solution of a micropolar flow between a rotating and a stationary disc. Computers & Mathematics with Applications, 6(2), 235–245. https://doi.org/10.1016/0898-1221(80)90031-0
  • Ariman, T. (1968). Micropolar and dipolar fluids, Int J Eng Sci, 6(1), 1–8. https://doi.org/10.1016/0020-7225(68)90033-5
  • Bhat, A., & Katagi, N. N. (2020). Micropolar fluid flow between a non-porous disk and a porous disk with slip: Keller-box solution. Ain Shams Engineering Journal, 11(1), 149–159. https://doi.org/10.1016/j.asej.2019.07.006
  • Desseaux, A., & Kelson, N. (2000). Solutions for the flow of a micropolar fluid in a porous channel. Proceedings of the 4th Biennial Engineering Mathematics and Application Conference (pp. 115–118). Engineering Mathematics Group of ANZIAM, Melbourne, Victoria, QUT ePrints.
  • Elcrat, A. R. (1976). On the radial flow of a viscous fluid between porous disks. Archive for Rational Mechanics and Analysis, 61(1), 91–96. https://doi.org/10.1007/BF00251865
  • Eringen, A. C. (1966). Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16(1), 1–18. http://www.jstor.org/stable/24901466
  • Ganesh, G. R., & Sridhar, W. (2021). MHD radiative Casson—Nanofluid stream above a nonlinear extending surface including chemical reaction through Darcy-Forchiemer medium. Heat Transfer, 50(8), 7691–7711. https://doi.org/10.1002/htj.22249
  • Guram, G. S., & Anwar, M. (1981). Micropolar flow due to a rotating disc with suction and injection. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 61(11), 589–595. https://doi.org/10.1002/zamm.19810611107
  • Ibrahim, W., & Zemedu, C. (2021). MHD nonlinear natural convection flow of a micropolar nanofluid past a nonisothermal rotating disk. Heat Transfer, 50(1), 564–595. https://doi.org/10.1002/htj.21894
  • Jamshed, W., Eid, M. R., Shahzad, F., Safdar, R., & Shamshuddin, M. D. (2022). Keller box analysis for thermal efficiency of magneto time-dependent nanofluid flowing in solar-powered tractor application applying nano-metal shaped factor. Waves in Random and Complex Media, 1–36. https://doi.org/10.1080/17455030.2022.2146779
  • Keller, H. B. (1971). A new difference scheme for parabolic problems. Numerical solution of partial differential equations–II (pp. 327–350). Elsevier. https://doi.org/10.1016/B978-0-12-358502-8.50014-1
  • Keller, H. B. (1975). Some computational problems in boundary-layer flows. In R. D. Richtmyer (Ed.), Proceedings of the fourth iternational conference on numerical methods in fluid dynamics (pp. 1–21). Springer Berlin Heidelberg.
  • Keller, H. B. (1978). Numerical methods in boundary-layer theory. Annual Review of Fluid Mechanics, 10(1), 417–433. https://doi.org/10.1146/annurev.fl.10.010178.002221
  • Kelson, N. A., Desseaux, A., & Farrell, T. W. (2003). Micropolar flow in a porous channel with high mass transfer. ANZIAM Journal, 44, 479. https://doi.org/10.21914/anziamj.v44i0.692
  • Lukaszewicz, G. (1998). Micropolar fluids: Theory and applications. Modeling and simulation in science, engineering and technology (1st ed.). Birkhäuser Basel.
  • Mathur, P., Mishra, S. R., Pattnaik, P. K., & Dash, R. K. (2021). Characteristics of Darcy–Forchheimer drag coefficients and velocity slip on the flow of micropolar nanofluid. Heat Transfer, 50(7), 6529–6547. https://doi.org/10.1002/htj.22191
  • Mishra, S., Mahanthesh, B., Mackolil, J., & Pattnaik, P. K. (2021). Nonlinear radiation and cross-diffusion effects on the micropolar nanoliquid flow past a stretching sheet with an exponential heat source. Heat Transfer, 50(4), 3530–3546. https://doi.org/10.1002/htj.22039
  • Mohanty, B., Mohanty, S., Mishra, S. R., & Pattnaik, P. K. (2021). Analysis of entropy on the peristaltic transport of micropolar nanofluid: A simulation obtained using approximate analytical technique. The European Physical Journal Plus, 136(11), 1139. https://doi.org/10.1140/epjp/s13360-021-02150-z
  • Ram, M. S., Spandana, K., Shamshuddin, M., & Salawu, S. O. (2023). Mixed convective heat and mass transfer in magnetized micropolar fluid flow toward stagnation point on a porous stretching sheet with heat source/sink and variable species reaction. International Journal of Modelling and Simulation, 43(5), 670–682. https://doi.org/10.1080/02286203.2022.2112008
  • Ramzan, M., Chung, J. D., & Ullah, N. (2017). Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk – A numerical approach. Results in Physics, 7, 3557–3566. [Online]. https://doi.org/10.1016/j.rinp.2017.09.002
  • Rashidi, M. M., Reza, M., & Gupta, S. (2016). MHD stagnation point flow of micropolar nanofluid between parallel porous plates with uniform blowing. Powder Technology, 301, 876–885. https://doi.org/10.1016/j.powtec.2016.07.019
  • Rasmussen, H. (1970). Steady viscous flow between two porous disks. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP, 21(2), 187–195. https://doi.org/10.1007/BF01590643
  • Shamshuddin, M. D., Mabood, F., Khan, W. A., & Rajput, G. R. (2023). Exploration of thermal Péclet number, vortex viscosity, and Reynolds number on two-dimensional flow of micropolar fluid through a channel due to mixed convection. Heat Transfer, 52(1), 854–873. https://doi.org/10.1002/htj.22719