725
Views
0
CrossRef citations to date
0
Altmetric
Biomedical Engineering

Monitoring and early warning detection of collapse and subsidence sinkholes using an optical fibre seismic sensor

ORCID Icon, , , &
Article: 2301152 | Received 02 Aug 2022, Accepted 28 Dec 2023, Published online: 18 Jan 2024

References

  • Ali, H., & Choi, J. (2019). Risk prediction of sinkhole occurrence for different subsurface soil profiles due to leakage from underground sewer and water pipelines. Sustainability, 12(1), 310. https://doi.org/10.3390/su12010310
  • Avutia, D., & Kalumba, D. (2014). Analytical study of dolomite sinkholes in centurion, South Africa. In Soil behaviour and geomechanics (pp. 633–641). American Society of Civil Engineers. https://doi.org/10.1061/9780784413388.066
  • Buchignani, V., et al. (2008). Evaporite karst and sinkholes: A synthesis on the Case of Camaiore (Italy). Environmental Geology, 8(53), 1037–1044.
  • Businesstech. (2018). Gauteng’s big sinkhole problem and how much government is spending to fix it. https://businesstech.co.za/news/property/275961/Gauteng’s-big-sinkhole-problem-and-how-much-government-is-spending-to-fix-it
  • Buttrick, D. B., Trollip, N. Y. G., Watermeyer, R. B., Pieterse, N. D., & Gerber, A. A. (2011). A performance based approach to dolomite risk management. Environmental Earth Sciences, 64(4), 1127–1138. https://doi.org/10.1007/s12665-011-0929-8
  • Cambridge CSIC. (n.d.) New use for existing technology to identify potential sinkholes. https://www-smartinfrastructure.eng.cam.ac.uk/projects-and-casestudies/2020-case-studies/new-use-existing-technology-identify-potential-sinkholes.
  • Cawley, P. (2018). Structural health monitoring: Closing the gap between research and industrial deployment. Structural Health Monitoring, 17(5), 1225–1244. https://doi.org/10.1177/1475921717750047
  • Colombero, C., Godio, A., & Jongmans, D. (2021). Ambient seismic noise and microseismicity monitoring of a prone-to-fall quartzite tower (Ormea, NW Italy). Remote Sensing, 13(9), 1664. https://doi.org/10.3390/rs13091664
  • Constantinou, S., & Van Rooy, J. L. (2018). Sinkhole and subsidence size distribution across dolomitic land in Gauteng. Journal of the South African Institution of Civil Engineering, 60(2), 2–8. https://doi.org/10.17159/2309-8775/2018/v60n2a1
  • Dobecki, T. L., & Upchurch, S. B. (2006). Geophysical applications to detect sinkholes and ground subsidence. Leading Edge, 25(3), 336–341. https://doi.org/10.1190/1.2184102
  • Ferentinou, M. (2020). Sinkhole collapse propagation studies through instrumented small-scale physical models. PIAHS, 382, 71–76. https://doi.org/10.5194/piahs-382-71-2020
  • Ferentinou, M., Witkowski, W., Hejmanowski, R., Grobler, H., Malinowska, A. (2020). Detection of sinkhole occurrence, experiences from South Africa. In TISOLS – Living with subsidence, Proc. IAHS (Vol. 382, pp. 77–82). Copernicus Publications. https://doi.org/10.5194/piahs-382-77-2020
  • Green, L. D. (2014). Modelling geomorphic systems: Scaled physical models. In Cook, S. J., Clarke, L. E., & Nield, J. M. (Eds.), Geomorphological techniques (pp. 2047–0371). British Society of Geomorphology.
  • Guo, P., & Infield, D. (2012). Wind turbine tower vibration modeling and monitoring by the nonlinear state estimation technique (NSET). Energies, 5(12), 5279–5293. https://doi.org/10.3390/en5125279
  • Gutiérrez, F., Benito-Calvo, A., Carbonel, D., Desir, G., Sevil, J., Guerrero, J., Martínez-Fernández, A., Karamplaglidis, T., García-Arnay, Á., & Fabregat, I. (2019). Review on sinkhole monitoring and performance of remediation measures by high-precision leveling and terrestrial laser scanner in the Salt Karst of the Ebro Valley, Spain. Engineering Geology, 248, 283–308. https://doi.org/10.1016/j.enggeo.2018.12.004
  • Heath, G. J., & Oosthuizen, A. C. (2008). A preliminary overview of the sinkhole record of South Africa. In Problem soils in South Africa (pp. 3–4). Proc. S.A.I.C.E.
  • Hisham, K. H. (2018). Optical fibre sensing technology: Basics, classifications and applications. American Journal of Remote Sensing, 6(1), 1–5.
  • Intrieri, E., Gigli, G., Nocentini, M., Lombardi, L., Mugnai, F., Fidolini, F., & Casagli, N. (2015). Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology, 241, 304–314. https://doi.org/10.1016/j.geomorph.2015.04.018
  • Intrieri, E., et al. (2018). Definition of sinkhole triggers and susceptibility based on hydrogeomorphological analysis. Environmental Earth Science, 77(1), 4. https://doi.org/10.1007/s12665017-7179-3
  • Jena, J., et al. (2020). Polarization-based optical fibre acoustic sensor for geological applications. JOSA B, 37, 147–153.
  • Kaufmann, G., Romanov, D., Tippelt, T., Vienken, T., Werban, U., Dietrich, P., Mai, F., & Börner, F. (2018). Mapping and modelling of collapse sinkholes in soluble rock: The Münsterdorf Site, Northern Germany. Journal of Applied Geophysics, 154, 64–80. https://doi.org/10.1016/j.jappgeo.2018.04.021
  • Kapogianni, E., Psarropoulos, P., & Sakellariou, M. (2020). Securing the future of cultural heritage sites, utilizing smart monitoring technologies: From the laboratory applications to the acropolis of Athens. In Correia, A. G., et al. (Eds.), Information technology in geoengineering: Proceedings of the 3rd International Conference (ICITG), Springer Series in Geomechanics and Geoengineering SSGG, Cham (pp. 750–762). Springer International Publishing. https://doi.org/10.1007/978-3-030-32029-4_64
  • Kim, W., Yi, J. H., Kim, J. T., & Park, J. H. (2017). Vibration-based structural health assessment of a wind turbine tower using a wind turbine model. Procedia Engineering, 188, 333–339. https://doi.org/10.1016/j.proeng.2017.04.492
  • Kukreja, R. (n.d.) Causes, effects and types of sinkholes. www.conserveenergy-future.com
  • Labuschagne, J., Ferintinou, M., Grobler, M., Jacobsz, S. W. (2020). Smart monitoring of sinkhole formation using optical fibre technology in information technology in information technology in geo-engineering. In Correia, A. G., Tinoco, J., Cortez, P., Lamas, L. (Eds.), Proceedings of the 3rd International Conference (ICITG). Springer Series in Geomechanics and Geoengineering SSGG, Cham (pp. 763–773). Springer International Publishing. https://doi.org/10.1007/978-3-03032029-4_65
  • Lian, J., Cai, O., Dong, X., Jiang, Q., & Zhao, Y. (2019). Health monitoring and safety evaluation of the offshore wind turbine structure: A review and discussion of future development. Sustain, 11(2), 1–29.
  • Linker, R., & Klar, A. (2015). Detection of sinkhole formation by strain profile measurements using BOTDR: Simulation study. Journal of Engineering Mechanics, 143(3), B4015002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000963
  • Matias, I. R., Ikezawa, S., & Corres, J. (2017). Fibre optic sensors: Current status and future possibilities. Smart Sensors, Measurement and Instrumentation (Vol. 21). Springer International Publishing. https://doi.org/10.1007/978-3-319-42625-9
  • Montjane, A. K., Tshibubudze, A., Woldai, T., & Heath, L. (2020). The influence of geological fractures on karstic sinkhole development in eastern areas of Centurion, South Africa. Environmental Earth Sciences, 79(21), 488. https://doi.org/10.1007/s12665-020-09234-6
  • Oh, K., Park, J., Lee, J., Epureanu, B. I., & Lee, J. (2015). A novel method and its field tests for monitoring and diagnosing blade health for wind turbines. IEEE Transactions on Instrumentation and Measurement, 64(6), 1–1. https://doi.org/10.1109/TIM.2014.2381791
  • Oosthuizen, A. C., & Richardson, S. (2011). Sinkholes and subsidence in South Africa. Council for Geoscience Western Cape Unit. CGS report number 2011–0010.
  • Oosthuizen, A., & Van Rooy, J. (2015). Hazard of sinkhole formation in the centurion CBD using the simplified method of scenario supposition. Journal of the South African Institution of Civil Engineering, 57(2), 69–75. https://doi.org/10.17159/2309-8775/2015/v57n2a8
  • Ruth, B. E., & Degner, J. D. (1984). Characteristics of sinkhole development and implications for potential cavity collapse in construction and difficult geology, karstic, limestone, permafrost, wetlands and peat deposits. 63rd Annual Meeting, TRB 1984 978, 0361–1981.
  • Sabri, N., Aljunid, S. A., Salim, M, S., Fouad, S. (2015). Fibre optic sensors. Short review and applications. In Gaol, F. L. (Eds.), Recent trends in physics of material science and technology (Vol. 204, pp. 299–311). Springer Series in Material Science. https://doi.org/10.1007/978-2872_19
  • Sarasini, F., & Santulli, C. (2014). 10 – Non-destructive testing (NDT) of natural fibre composites: acoustic emission technique. In Hodzic, A., & Shanks, R. (Eds.), Natural fibre composites (pp. 273–302). Woodhead Publishing.
  • Scotto di Santolo, A., Forte, G., & Santo, A. (2018). Analysis of sinkhole triggering mechanisms in the Hinterland of Naples (Southern Italy). Engineering Geology, 237, 42–52. https://doi.org/10.1016/j.enggeo.2018.02.014
  • Shiwa, M., & Kishi, T. (2005). NDT-based assessment of damage: An overview. In Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., & Veyssière, P. (Eds.), Encyclopedia of materials: Science and technology (pp. 1–8). Elsevier.
  • Sladen, A., Rivet, D., Ampuero, J. P., De Barros, L., Hello, Y., Calbris, G., & Lamare, P. (2019). Distributed sensing of earthquakes and ocean-solid earth interactions on seafloor telecom cables. Nature Communications, 10(5777), 1–7. https://doi.org/10.1038/s41467-019-13793-z
  • Strakowski, P. (2018). Sinkhole formation hazard assessment. Environmental Earth Science, 78(9), 1–6. https://doi.org/10.1007/s12665-018-8002-5
  • Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T. A., & Ekemb, G. (2014). Wind turbine condition monitoring: State-of-the-art review, new trends, and future challenges. Energies, 7(4), 2595–2630. https://doi.org/10.3390/en7042595
  • Theron, A., & Engelbrecht, J. (2018). The role of earth observation, with a focus on SAR interferometry, for sinkhole hazard assessment. Remote Sensing, 10(10), 1506. https://doi.org/10.3390/rs10101506
  • Wang, M., & Wang, Z. (2011). The vibration frequencies of wind turbine steel tower by transfer matrix method. Proceeding of 3rd International Conference Measurement Technology, Mechatronics Automation, ICMTMA 2011 (vol. 3, pp. 995–998).
  • Wang, Y., Jin, B., Wang, Y., Wang, D., Liu, X., & Bai, Q. (2017). Real-time distributed vibration monitoring system using Φ-OTDR. IEEE Sensors Journal, 17(5), 1333–1341. https://doi.org/10.1109/JSEN.2016.2642221
  • Wei, L., & Tjin, S. C. (2020). Special issue “fibre optic sensors and applications: An overview. Sensors, 20(12), 3400. https://doi.org/10.3390/s20123400
  • Yu, F. T. S., & Wei, L. (2002). Fibre optic sensors and applications. Marcel Dekker.
  • Zhan, Z., Cantono, M., Kamalov, V., Mecozzi, A., Müller, R., Yin, S., & Castellanos, J. C. (2021). Optical polarization–based seismic and water wave sensing on transoceanic cables. Science, 371(6532), 931–936. https://doi.org/10.1126/science.abe6648
  • Zhende, G., Xiaozhen, J., & Ming, G. (2013). A calibration test of karst collapse monitoring device by optical time domain reflectometry (BOTDR) technique. In Land, L., Doctor, D. H. & Stephenson, J. B.(Eds.), Proceedings of the 13th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst (pp. 71–77). National Cave and Karst Research Institute.