657
Views
0
CrossRef citations to date
0
Altmetric
Biomedical Engineering

Mathematical analysis and modeling of fractional order human brain information dynamics including the major effect on sensory memory

, , &
Article: 2301161 | Received 10 Sep 2023, Accepted 28 Dec 2023, Published online: 25 Jan 2024

References

  • Abbot, B. (2002). Human memory (pp. 1–20). Indiana University-Purdue University at Fort Wayne, Psychology Department. Indiana.
  • Akgül, E. K. (2019). Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives. Chaos (Woodbury, N.Y.), 29(2), 023108. https://doi.org/10.1063/1.5084035
  • Atangana, A. (2020). Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination? Chaos, Solitons, and Fractals, 136, 109860. https://doi.org/10.1016/j.chaos.2020.109860
  • Atangana, A., & Akgül, A. (2020). Can transfer function and Bode diagram be obtained from Sumudu transform. Alexandria Engineering Journal, 59(4), 1971–1984. https://doi.org/10.1016/j.aej.2019.12.028
  • Baleanu, D., Tenreiro Machado, J., & Luo, A. (2012). Fractional dynamics and control. New York, NY: Springer.
  • Coutin, L., Guglielm, J., & Marie, N. (2018). On a fractional stochastic hodgkin-huxley model. Int. J. Biomath, 11, 1850061. https://doi.org/10.1142/S1793524518500614
  • González-Ramírez, L. R. (2022). Fractional-order traveling wave approximations for a fractional-order neural field model. Frontiers in Computational Neuroscience, 16, 788924. https://doi.org/10.3389/fncom.2022.788924
  • Herculano-Houzel, S. (2009). The human brain in numbers: A linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3, 31. https://doi.org/10.3389/neuro.09.031.2009
  • Huitt, W. (2000). The information processing approach. Educational Psychology Interactive (pp. 4–12). Valdosta, GA: Valdosta State University. http://chiron.valdosta.edu/whuitt/col/cogsys/infoproc.html.
  • Jeffrey, D. S., Martin, P., & Geoffrey, F. W. (2007). Commented on top-down verses bottom up control of attention in the prefrontal and posterior parietal cortices. PubMed 44.
  • Justin, M., Boudoue Hubert, M., Betchewe, G., Yamigno Doka, S., & Timoleon Crepin, K. (2020). Chaos in human brain phase transition. In Research advances in chaos theory. IntechOpen.
  • Kargarnovin, S., Hernandez, C., Farahani, F. V., & Karwowski, W. (2023). Evidence of chaos in electroencephalogram signatures of human performance: A systematic review. Brain Sciences, 13(5), 813. https://doi.org/10.3390/brainsci13050813
  • Khan, N., Ali, A., Ullah, A., & Khan, Z. A. (2023). Mathematical analysis of neurological disorder under fractional order derivative. AIMS Mathematics, 8(8), 18846–18865. https://doi.org/10.3934/math.2023959
  • McKenna, T. M., McMullen, T. A., & Shlesinger, M. F. (1994). The brain as a dynamic physical system. Neuroscience, 60(3), 587–605. https://doi.org/10.1016/0306-4522(94)90489-8
  • Namazi, H., & Kulish, V. V. (2015). Fractional diffusion based modelling and prediction of human brain response to external stimuli. Computational and Mathematical Methods in Medicine, 2015, 148534. https://doi.org/10.1155/2015/148534
  • Natarajan, K., Acharya, U. R., Alias, F., Tiboleng, T., & Puthusserypady, S. K. (2004). Nonlinear analysis of EEG signals at different mental states. Biomedical Engineering Online, 3(1), 7. https://doi.org/10.1186/1475-925X-3-7
  • Oestreicher, C. (2007). A history of chaos theory. Dialogues in Clinical Neuroscience, 9(3), 279–289. https://doi.org/10.31887/DCNS.2007.9.3/coestreicher
  • Pritchard, W. S., & Duke, D. W. (1995). Measuring chaos in the BrainA tutorial review of EEG dimension estimation. Brain and Cognition, 27(3), 353–397. https://doi.org/10.1006/brcg.1995.1027
  • Rahman, M., Althobaiti, A., Riaz, M. B., & Al-Duais, F. S. (2022). A theoretical and numerical study on fractional order biological models with caputo fabrizio derivative. Fractal and Fractional, 6(8), 446. https://doi.org/10.3390/fractalfract6080446
  • Samuel, S., Richard, T., Tyavbee, A. J., & Terhemen, A. (2015). A mathematical model to study the human brain information processing dynamics. American Journal of Applied Mathematics, 3(5), 233–242. https://doi.org/10.11648/j.ajam.20150305.15
  • Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology: official Journal of the International Federation of Clinical Neurophysiology, 116(10), 2266–2301. https://doi.org/10.1016/j.clinph.2005.06.011
  • Toufik, M., & Atangana, A. (2017). New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models. The European Physical Journal plus, 132, 1–16.
  • Wei, Z., Wang, X. J., & Wang, H. D. (2012). From distributed resources to limited slots in multiple-item working memory: A spiking network model with normalization. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(33), 11228–11240. https://doi.org/10.1523/JNEUROSCI.0735-12.2012
  • Weinberg, S. (2015). Membrane capacitive memory alters spiking in neurons described by the fractional-order hodgkin-huxley model. PloS One, 10(5), e0126629. https://doi.org/10.1371/journal.pone.0126629
  • Xu, C. J., Cui, X. H., Li, P. L., Yan, J. L., & Yao, L. Y. (2023a). Exploration on dynamics in a discrete predator-prey competitive model involving time delays and feedback controls. Journal of Biological Dynamics, 17(1), 2220349. https://doi.org/10.1080/17513758.2023.2220349
  • Xu, C., Mu, D., Liu, Z., Pang, Y., Liao, M., & Li, P. (2023b). Bifurcation dynamics and control mechanism of a fractional-order delayed Brusselator chemical reaction model. MATCH Communications in Mathematical and in Computer Chemistry, 89(1), 73–106. https://doi.org/10.46793/match.89-1.073X
  • Xu, C., Mu, D., Pan, Y., Aouiti, C., & Yao, L. (2023c). Exploring bifurcation in a fractional-order predator-prey system with mixed delays. Journal of Applied Analysis and Computation, 13(3), 1119–1136. https://doi.org/10.11948/20210313
  • Zekveld, A. A., Heslenfeld, D. J., Festen, J. M., & Schoonhoven, R. (2006). The top-down and bottom-up processes in speech comprehension. NeuroImage, 32(4), 1826–1836. https://doi.org/10.1016/j.neuroimage.2006.04.199
  • Zhao, X., & Robinson, P. (2015). Generalized seizures in a neural field model with bursting dynamics. Journal of Computational Neuroscience, 39(2), 197–216. https://doi.org/10.1007/s10827-015-0571-7